References
- Agency, E.S. (2012), SA Studies future of Europe's launches services; 25 July 2012.
- ASTM Standard: D5229/D5229M-04 (2004), Standard test method for moisture absorption.
- ASTM Standard: D3039/D3039M-08 (2008), Standard test method for tensile properties of polymer matrix composite materials.
- Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Composites: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
- Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Brazil. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
- Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
- Bert, C.W. and Birman, V. (1987), "Dynamic instability of shear deformable antisymmetric angle-ply plates", Int. J. Solid. Struct., 23(7), 1053-1061. https://doi.org/10.1016/0020-7683(87)90096-5
- Biswal, M., Sahu, S.K. and Asha, A.V. (2015), "Experimental and numerical studies on free vibration of laminated composite shallow shells in hygrothermal environment", Compos. Struct., 127,165-174. https://doi.org/10.1016/j.compstruct.2015.03.007
- Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
- Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., Int. J., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
- Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
- Bouguenina, O., Belakhdar, K., Tounsi, A. and Bedia, E.A.A. (2015), "Numerical analysis of FGM plates with variable thickness subjected to thermal buckling", Steel Compos. Struct., Int. J., 19(3), 679-695. https://doi.org/10.12989/scs.2015.19.3.679
- Carrera, E. (1988), "The effects of shear deformation and curvature on buckling and vibrations of cross-ply laminated composite doubly curved shells", J. Sound Vib., 150(3), 405-433. https://doi.org/10.1016/0022-460X(91)90895-Q
- Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2007), Concepts and Applications of Finite Element Analysis, (4th Edition), John Wiley and Sons, Singapore.
- Ferreira, A.J.M. and Barbosa, J.T. (2000), "Buckling behaviour of composite shells", Compos. Struct., 50(1), 93-98. https://doi.org/10.1016/S0263-8223(00)00090-8
- Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
- Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E.A.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", ASCE J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
- Hsu, Y.S., Reddy, J.N. and Bert, C.W. (1981), "Thermoelasticity of circular cylindrical shells laminated of bimodulus composite materials", J. Therm. Stress., 4(2), 155-177. https://doi.org/10.1080/01495738108909961
- Jun, S.M. and Hong, C.S. (1988), "Buckling behavior of laminated composite cylindrical panels under axial compression", Comput. Struct., 29(3),479-490. https://doi.org/10.1016/0045-7949(88)90400-2
- Jung, W.Y. and Han, S.C. (2014), "Shear buckling responses of laminated composite shells using a modified 8-node ANS shell element", Compos. Struct., 109, 119-129. https://doi.org/10.1016/j.compstruct.2013.10.055
- Kar, V.R., Mahapatra T.R. and Panda, S.K. (2015), "Nonlinear flexural analysis of laminated composite flat panel under hygro-thermo-mechanical loading", Steel Compos. Struct., Int. J., 19(4), 1011-1033. https://doi.org/10.12989/scs.2015.19.4.1011
- Khdeir, A.A., Reddy, J.N. and Frederick, D. (1989), "A study of bending, vibration and buckling of crossply circular cylindrical shells with various shell theories", Int. J. Eng. Sci., 27(11), 1337-1351. https://doi.org/10.1016/0020-7225(89)90058-X
- Kim, K.D. (1996), "Buckling behaviour of composite panels using the finite element method", Compos. Struct., 36(1-2), 33-43. https://doi.org/10.1016/S0263-8223(96)00063-3
- Kundu, C.K. and Sinha, P.K. (2007), "Post-buckling analysis of laminated composite shells", Compos. Struct., 78(3), 316-324. https://doi.org/10.1016/j.compstruct.2005.10.005
- Lal, A., Singh, B.N. and Kale, S. (2011), "Stochastic post buckling analysis of laminated composite cylindrical shell panel subjected to hygrothermomechanical loading", Compos. Struct., 93(4), 1187-1200. https://doi.org/10.1016/j.compstruct.2010.11.005
- Lee, S.Y. and Yen, W.J. (1989), "Hygrothermal effects on the stability of a cylindrical composite shell panel", Comput. Struct., 33(2), 551-559. https://doi.org/10.1016/0045-7949(89)90029-1
- Li, Z.M. and Qiao, P. (2015), "Buckling and postbuckling of anisotropic laminated cylindrical shells under combined external pressure and axial compression in thermal environments", Compos. Struct., 119, 709-726. https://doi.org/10.1016/j.compstruct.2014.09.039
- Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
- Matsunaga, H. (1999), "Vibration and stability of thick simply supported shallow shells subjected to inplane stresses", J. Sound Vib., 225(1), 41-60. https://doi.org/10.1006/jsvi.1999.2234
- Meziane M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
- Moita, J.S., Mota Soares, C.M. and Mota Soares, C.A. (1999), "Buckling and dynamic behaviour of laminated composite structures using a discrete higher-order displacement model", Comput. Struct., 73(1-5), 407- 423. https://doi.org/10.1016/S0045-7949(98)00270-3
- Nosier, A. and Reddy, J.N. (1992), "Vibration and stability analyses of cross-ply laminated circular cylindrical shells", J. Sound Vib., 157(l), 139-159. https://doi.org/10.1016/0022-460X(92)90571-E
- Patel, B.P., Ganapathi, M. and Makhecha, D.P. (2002), "Hygrothermal effects on the structural behaviour of thick composite laminates using higher-order theory", Compos. Struct., 56(1), 25-34. https://doi.org/10.1016/S0263-8223(01)00182-9
- Rajanna, T., Banerjee, S., Desai, Y.M. and Prabhakara, D.L. (2016), "Vibration and buckling analyses of laminated panels with and without cutouts under compressive and tensile edge loads", Steel Compos. Struct., Int. J., 21(1), 37-55. https://doi.org/10.12989/scs.2016.21.1.037
- Reddy, J.N. (1984), "Exact solutions of moderately thick laminated shells", J. Eng. Mech., 110(5), 794-809. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:5(794)
- Ren, M., Li, T., Huang, Q. and Wang, B. (2014), "Numerical investigation into the buckling behavior of advanced grid stiffened composite cylindrical shell", J. Reinf. Plast. Compos., 33(16), 1508-1519. https://doi.org/10.1177/0731684414537881
- Sairam, K.S. and Sinha, P.K. (1992), "Hygrothermal effects on the buckling of laminated composite plates", Compos. Struct., 21(4), 233-247. https://doi.org/10.1016/0263-8223(92)90051-D
- Sairam, K.S. and Babu, T.S. (2002), "Buckling of laminate composite shells under transverse load", Compos. Struct., 55(2),157-168. https://doi.org/10.1016/S0263-8223(01)00143-X
- Shen, S.H. (2000), "Hygrothermal effects on the post-buckling of composite laminated cylindrical shells", Compos. Sci. Technol., 60(8), 1227-1240. https://doi.org/10.1016/S0266-3538(00)00062-2
- Sheng, G.G. and Wang, X. (2008), "Thermal vibration, buckling and dynamic stability of functionally graded cylindrical shells embedded in an elastic medium", J. Reinf. Plast. Compos., 27(2), 117-134. https://doi.org/10.1177/0731684407082627
- Simitses, G.J. (1996), "Buckling of moderately thick laminated cylindrical shells: A review", Compos. Part B, 27(6), 581-587. https://doi.org/10.1016/1359-8368(95)00013-5
- Singh, B.N. and Babu, J.B. (2009), "Thermal buckling of laminated conical shells embedded with and without piezoelectric layer", J. Reinf. Plast. Compos., 28(7), 791-812. https://doi.org/10.1177/0731684407087133
- Thangaratnam, R.K., Palaninathan, R. and Ramachandran, J. (1990), "Thermal buckling of laminated composite shells", AIAA Journal, 28(5), 859-860. https://doi.org/10.2514/3.25130
- Thinh, T.I. and Ngoc, L.K. (2005), "Buckling analysis of laminated cylindrical composite shell panel under mechanical and hygrothermal loads", Vietnam J. Mech., 27(1), 1-12. https://doi.org/10.15625/0866-7136/27/1/5709
- Tounsi, A., Houari, M.S.A., Benyoucef, S. and Bedia, E.A.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
- Whitney, J.M. and Ashton, J.E. (1971), "Effect of environment on the elastic response of layered composite plates", Am. Inst. Aeronaut. Astronaut. J., 9(9), 1708-1713. https://doi.org/10.2514/3.49976
- Yahia, S.A, Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., Int. J., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
- Zidi, M., Tounsi, A., Houari, M.S.A., Bedia, E.A.A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001
Cited by
- Nonlinear static analysis of laminated composite beams under hygro-thermal effect vol.72, pp.4, 2016, https://doi.org/10.12989/sem.2019.72.4.433
- Buckling of fiber metal laminated plates - numerical and experimental studies vol.92, pp.3, 2016, https://doi.org/10.1108/aeat-01-2019-0005
- Thermal and Mechanical Buckling and Vibration Analysis of FG-GPLRC Annular Plate Using Higher Order Shear Deformation Theory and Generalized Differential Quadrature Method vol.12, pp.2, 2020, https://doi.org/10.1142/s1758825120500192
- Analysis of the machinability of GFRE composites in drilling processes vol.36, pp.4, 2016, https://doi.org/10.12989/scs.2020.36.4.417
- Hygrothermal modeling of the buckling behavior of sandwich plates with nanocomposite face sheets resting on a Pasternak foundation vol.33, pp.4, 2021, https://doi.org/10.1007/s00161-020-00929-6
- Hygro-Thermo-Mechanical Vibration and Buckling Analysis of Composite Laminates with Elliptical Cutouts under Localized Edge Loads vol.21, pp.11, 2016, https://doi.org/10.1142/s0219455421501509
- Effect of hygrothermal load on amplitude frequency response for CFRP spherical shell panel vol.281, pp.None, 2016, https://doi.org/10.1016/j.compstruct.2021.114978