DOI QR코드

DOI QR Code

Hygrothermal effects on buckling of composite shell-experimental and FEM results

  • Biswal, Madhusmita (School of Civil Engineering KIIT University) ;
  • Sahu, Shishir Kr. (Department of Civil Engineering National Institute of Technology) ;
  • Asha, A.V. (Department of Civil Engineering National Institute of Technology) ;
  • Nanda, Namita (Department of Applied Mechanics, Indian Institute of Technology)
  • Received : 2016.05.23
  • Accepted : 2016.12.01
  • Published : 2016.12.30

Abstract

The effects of moisture and temperature on buckling of laminated composite cylindrical shell panels are investigated both numerically and experimentally. A quadratic isoparametric eight-noded shell element is used in the present analysis. First order shear deformation theory is used in the present finite element formulation for buckling analysis of shell panels subjected to hygrothermal loading. A program is developed using MATLAB for parametric study on the buckling of shell panels under hygrothermal field. Benchmark results on the critical loads of hygrothermally treated woven fiber glass/epoxy laminated composite cylindrical shell panels are obtained experimentally by using universal testing machine INSTRON 8862. The effects of curvature, lamination sequences, number of layers and aspect ratios on buckling of laminated composite cylindrical curved panels subjected to hygrothermal loading are considered. The results are presented showing the reduction in buckling load of laminated composite shells with the increase in temperature and moisture concentrations.

Keywords

References

  1. Agency, E.S. (2012), SA Studies future of Europe's launches services; 25 July 2012.
  2. ASTM Standard: D5229/D5229M-04 (2004), Standard test method for moisture absorption.
  3. ASTM Standard: D3039/D3039M-08 (2008), Standard test method for tensile properties of polymer matrix composite materials.
  4. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Beg, O.A. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Composites: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  5. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Brazil. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
  6. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  7. Bert, C.W. and Birman, V. (1987), "Dynamic instability of shear deformable antisymmetric angle-ply plates", Int. J. Solid. Struct., 23(7), 1053-1061. https://doi.org/10.1016/0020-7683(87)90096-5
  8. Biswal, M., Sahu, S.K. and Asha, A.V. (2015), "Experimental and numerical studies on free vibration of laminated composite shallow shells in hygrothermal environment", Compos. Struct., 127,165-174. https://doi.org/10.1016/j.compstruct.2015.03.007
  9. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  10. Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., Int. J., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
  11. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  12. Bouguenina, O., Belakhdar, K., Tounsi, A. and Bedia, E.A.A. (2015), "Numerical analysis of FGM plates with variable thickness subjected to thermal buckling", Steel Compos. Struct., Int. J., 19(3), 679-695. https://doi.org/10.12989/scs.2015.19.3.679
  13. Carrera, E. (1988), "The effects of shear deformation and curvature on buckling and vibrations of cross-ply laminated composite doubly curved shells", J. Sound Vib., 150(3), 405-433. https://doi.org/10.1016/0022-460X(91)90895-Q
  14. Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J. (2007), Concepts and Applications of Finite Element Analysis, (4th Edition), John Wiley and Sons, Singapore.
  15. Ferreira, A.J.M. and Barbosa, J.T. (2000), "Buckling behaviour of composite shells", Compos. Struct., 50(1), 93-98. https://doi.org/10.1016/S0263-8223(00)00090-8
  16. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  17. Hebali, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E.A.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", ASCE J. Eng. Mech., 140(2), 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  18. Hsu, Y.S., Reddy, J.N. and Bert, C.W. (1981), "Thermoelasticity of circular cylindrical shells laminated of bimodulus composite materials", J. Therm. Stress., 4(2), 155-177. https://doi.org/10.1080/01495738108909961
  19. Jun, S.M. and Hong, C.S. (1988), "Buckling behavior of laminated composite cylindrical panels under axial compression", Comput. Struct., 29(3),479-490. https://doi.org/10.1016/0045-7949(88)90400-2
  20. Jung, W.Y. and Han, S.C. (2014), "Shear buckling responses of laminated composite shells using a modified 8-node ANS shell element", Compos. Struct., 109, 119-129. https://doi.org/10.1016/j.compstruct.2013.10.055
  21. Kar, V.R., Mahapatra T.R. and Panda, S.K. (2015), "Nonlinear flexural analysis of laminated composite flat panel under hygro-thermo-mechanical loading", Steel Compos. Struct., Int. J., 19(4), 1011-1033. https://doi.org/10.12989/scs.2015.19.4.1011
  22. Khdeir, A.A., Reddy, J.N. and Frederick, D. (1989), "A study of bending, vibration and buckling of crossply circular cylindrical shells with various shell theories", Int. J. Eng. Sci., 27(11), 1337-1351. https://doi.org/10.1016/0020-7225(89)90058-X
  23. Kim, K.D. (1996), "Buckling behaviour of composite panels using the finite element method", Compos. Struct., 36(1-2), 33-43. https://doi.org/10.1016/S0263-8223(96)00063-3
  24. Kundu, C.K. and Sinha, P.K. (2007), "Post-buckling analysis of laminated composite shells", Compos. Struct., 78(3), 316-324. https://doi.org/10.1016/j.compstruct.2005.10.005
  25. Lal, A., Singh, B.N. and Kale, S. (2011), "Stochastic post buckling analysis of laminated composite cylindrical shell panel subjected to hygrothermomechanical loading", Compos. Struct., 93(4), 1187-1200. https://doi.org/10.1016/j.compstruct.2010.11.005
  26. Lee, S.Y. and Yen, W.J. (1989), "Hygrothermal effects on the stability of a cylindrical composite shell panel", Comput. Struct., 33(2), 551-559. https://doi.org/10.1016/0045-7949(89)90029-1
  27. Li, Z.M. and Qiao, P. (2015), "Buckling and postbuckling of anisotropic laminated cylindrical shells under combined external pressure and axial compression in thermal environments", Compos. Struct., 119, 709-726. https://doi.org/10.1016/j.compstruct.2014.09.039
  28. Mahi, A., Bedia, E.A.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39(9), 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  29. Matsunaga, H. (1999), "Vibration and stability of thick simply supported shallow shells subjected to inplane stresses", J. Sound Vib., 225(1), 41-60. https://doi.org/10.1006/jsvi.1999.2234
  30. Meziane M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  31. Moita, J.S., Mota Soares, C.M. and Mota Soares, C.A. (1999), "Buckling and dynamic behaviour of laminated composite structures using a discrete higher-order displacement model", Comput. Struct., 73(1-5), 407- 423. https://doi.org/10.1016/S0045-7949(98)00270-3
  32. Nosier, A. and Reddy, J.N. (1992), "Vibration and stability analyses of cross-ply laminated circular cylindrical shells", J. Sound Vib., 157(l), 139-159. https://doi.org/10.1016/0022-460X(92)90571-E
  33. Patel, B.P., Ganapathi, M. and Makhecha, D.P. (2002), "Hygrothermal effects on the structural behaviour of thick composite laminates using higher-order theory", Compos. Struct., 56(1), 25-34. https://doi.org/10.1016/S0263-8223(01)00182-9
  34. Rajanna, T., Banerjee, S., Desai, Y.M. and Prabhakara, D.L. (2016), "Vibration and buckling analyses of laminated panels with and without cutouts under compressive and tensile edge loads", Steel Compos. Struct., Int. J., 21(1), 37-55. https://doi.org/10.12989/scs.2016.21.1.037
  35. Reddy, J.N. (1984), "Exact solutions of moderately thick laminated shells", J. Eng. Mech., 110(5), 794-809. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:5(794)
  36. Ren, M., Li, T., Huang, Q. and Wang, B. (2014), "Numerical investigation into the buckling behavior of advanced grid stiffened composite cylindrical shell", J. Reinf. Plast. Compos., 33(16), 1508-1519. https://doi.org/10.1177/0731684414537881
  37. Sairam, K.S. and Sinha, P.K. (1992), "Hygrothermal effects on the buckling of laminated composite plates", Compos. Struct., 21(4), 233-247. https://doi.org/10.1016/0263-8223(92)90051-D
  38. Sairam, K.S. and Babu, T.S. (2002), "Buckling of laminate composite shells under transverse load", Compos. Struct., 55(2),157-168. https://doi.org/10.1016/S0263-8223(01)00143-X
  39. Shen, S.H. (2000), "Hygrothermal effects on the post-buckling of composite laminated cylindrical shells", Compos. Sci. Technol., 60(8), 1227-1240. https://doi.org/10.1016/S0266-3538(00)00062-2
  40. Sheng, G.G. and Wang, X. (2008), "Thermal vibration, buckling and dynamic stability of functionally graded cylindrical shells embedded in an elastic medium", J. Reinf. Plast. Compos., 27(2), 117-134. https://doi.org/10.1177/0731684407082627
  41. Simitses, G.J. (1996), "Buckling of moderately thick laminated cylindrical shells: A review", Compos. Part B, 27(6), 581-587. https://doi.org/10.1016/1359-8368(95)00013-5
  42. Singh, B.N. and Babu, J.B. (2009), "Thermal buckling of laminated conical shells embedded with and without piezoelectric layer", J. Reinf. Plast. Compos., 28(7), 791-812. https://doi.org/10.1177/0731684407087133
  43. Thangaratnam, R.K., Palaninathan, R. and Ramachandran, J. (1990), "Thermal buckling of laminated composite shells", AIAA Journal, 28(5), 859-860. https://doi.org/10.2514/3.25130
  44. Thinh, T.I. and Ngoc, L.K. (2005), "Buckling analysis of laminated cylindrical composite shell panel under mechanical and hygrothermal loads", Vietnam J. Mech., 27(1), 1-12. https://doi.org/10.15625/0866-7136/27/1/5709
  45. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Bedia, E.A.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24(1), 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  46. Whitney, J.M. and Ashton, J.E. (1971), "Effect of environment on the elastic response of layered composite plates", Am. Inst. Aeronaut. Astronaut. J., 9(9), 1708-1713. https://doi.org/10.2514/3.49976
  47. Yahia, S.A, Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., Int. J., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  48. Zidi, M., Tounsi, A., Houari, M.S.A., Bedia, E.A.A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001

Cited by

  1. Nonlinear static analysis of laminated composite beams under hygro-thermal effect vol.72, pp.4, 2016, https://doi.org/10.12989/sem.2019.72.4.433
  2. Buckling of fiber metal laminated plates - numerical and experimental studies vol.92, pp.3, 2016, https://doi.org/10.1108/aeat-01-2019-0005
  3. Thermal and Mechanical Buckling and Vibration Analysis of FG-GPLRC Annular Plate Using Higher Order Shear Deformation Theory and Generalized Differential Quadrature Method vol.12, pp.2, 2020, https://doi.org/10.1142/s1758825120500192
  4. Analysis of the machinability of GFRE composites in drilling processes vol.36, pp.4, 2016, https://doi.org/10.12989/scs.2020.36.4.417
  5. Hygrothermal modeling of the buckling behavior of sandwich plates with nanocomposite face sheets resting on a Pasternak foundation vol.33, pp.4, 2021, https://doi.org/10.1007/s00161-020-00929-6
  6. Hygro-Thermo-Mechanical Vibration and Buckling Analysis of Composite Laminates with Elliptical Cutouts under Localized Edge Loads vol.21, pp.11, 2016, https://doi.org/10.1142/s0219455421501509
  7. Effect of hygrothermal load on amplitude frequency response for CFRP spherical shell panel vol.281, pp.None, 2016, https://doi.org/10.1016/j.compstruct.2021.114978