DOI QR코드

DOI QR Code

Evaluation of limit load analysis for pressure vessels - Part I: Linear and nonlinear methods

  • Chen, Xiaohui (School of Control Engineering, Northeastern University) ;
  • Gao, Bingjun (School of Chemical Engineering and Technology, Hebei University of Technology) ;
  • Wang, Xingang (School of Control Engineering, Northeastern University)
  • 투고 : 2016.05.20
  • 심사 : 2016.11.29
  • 발행 : 2016.12.30

초록

Limit load of pressure bearing structures was reviewed in this article. By means of the finite element analysis, limit load of pressurized cylinder with nozzle was taken as an example. Stress classification method and Elastic-plastic finite element analysis combining with limit load determination methods were used to determine limit load of cylinder with nozzle. Comparison of limit load determined by different methods, the results indicated that limit load determined by linearization method was the smallest. Limit load determined by twice elastic slope criterion was the nearest than experimental results. Elastic-plastic finite element analysis had comparably computational precision, but required time consuming. And then the requirements of computer processing and storage capacity by power system became higher and higher. Most of criteria for limit load estimation included any human factors based on a certain substantive characteristics of experimental results. The reasonable criterion should be objective and operational.

키워드

과제정보

연구 과제 주관 기관 : Doctoral Scientific Research Foundation of Liaoning Province

참고문헌

  1. Adibi-Asl, R. and Seshadri, R. (2007), "Simplified Limit Load Determination of Cracked Components Using the Reference Two-Bar Structure", ASME PVP, Paper No. PVP2007-26747, San Antonio, TX, USA.
  2. ASME (1971), ASME Boiler and Pressure Vessel Code; Section III. Division 1, American Society Mechanical Engineers, New York, NY, USA.
  3. ASME (1974), ASME Boiler and Pressure Vessel Code; Section III. Division 1 Par. 1430, American Society Mechanical Engineers, New York, NY, USA.
  4. ASME (1975), ASME Boiler and Pressure Vessel Code; Section III. Division 1 Par. 1430, American Society Mechanical Engineers, New York, NY, USA.
  5. ASME (1986), ASME Boiler and Pressure Vessel Code; Section XI. Division 2, American Society Mechanical Engineers, New York, NY, USA.
  6. ASME (2010), ASME Boiler and Pressure Vessel Code; Section VIII. Division 2, American Society Mechanical Engineers, New York, NY, USA.
  7. Brighenti, R. (2001), "Influence of a central straight crack on the buckling behavior of thin plates under tension, compression, or shear loading", Int. J. Mech. Mater. Des., 6(1), 73-87. https://doi.org/10.1007/s10999-010-9122-6
  8. Calladine, C.R. (2000), Plasticity for Engineers, Horwood Publisheing, Chichester, UK.
  9. Caratheodory, C. and Schmidt, E. (1923), "Uber Die Hencky-Prandtlschen Kurven", Z. angew. Math. Mech., 3, 468-475. https://doi.org/10.1002/zamm.19230030607
  10. Charnes, A. and Greenberg, H.J. (1951), "Plastic collapse and linear programming", Bull. Am. Math. Soc., 57(6), 480 p.
  11. Chen, F. (2005), "Investigation on the limit and burst pressures for the vessels with nozzle", Ph.D. Dissertation; Nanjing University of Technology, Nanjing, China.
  12. Chen, X.H., Chen, X., Chen, G. and Li, D.M. (2015), "Ratcheting behavior of pressurized Z2CND18.12N stainless steel pipe under different control modes", Steel Compos. Struct., Int. J., 18(1), 29-50. https://doi.org/10.12989/scs.2015.18.1.029
  13. Chen, X.H. and Chen, X. (2016), "Effect of local wall thinning on ratcheting behavior of pressurized $90^{\circ}$ elbow pipe under reversed bending using finite element analysis", Steel Compos. Struct., Int. J., 20(4), 931-950. https://doi.org/10.12989/scs.2016.20.4.931
  14. Chiodo, M.S.G. and Ruggieri, C. (2009), "Failure assessments of corroded pipelines with axial defects using stress-based criteria: Numerical studies and verification analyses", Int. J. Press. Vessel. Pip., 86(2-3), 164-176. https://doi.org/10.1016/j.ijpvp.2008.11.011
  15. Cosham, A., Hopkins, P. and Macdonald, K.A. (2007), "Best practice for the assessment of defects in pipelines - Corrosion", Eng. Fail. Anal., 14(7), 1245-1265. https://doi.org/10.1016/j.engfailanal.2006.11.035
  16. Davis, R.O. and Selvadurai, A.P. (2002), Plasticity and Geomechanics, Cambridge University Press, UK.
  17. Demir, H.H. and Drueker, D.C. (1963), "An Experimental Study of Cylindrieal Shells under Ring Loads", In: Progress in Applied Mechanics, (Prager Anniversary Volume), MaeMillan, New York, pp. 205-220.
  18. EN13445-3 (2002), European Committee for Standardization (CEN); European Standard for unfired pressure vessel-Part 3: design.
  19. Fanous, Ihab F.Z.R. and Seshadri, R. (2007), "Stress classification using the R-node method", 129(4), 676-682. https://doi.org/10.1115/1.2767357
  20. Gao, B.J., Chen, X.H., Shi, X.P. and Dong, J.H. (2010), "An approach to derive primary bending stress from finite element analysis for pressure vessels and applications structural design", ASME J. Press. Vessel Technol., 132(6), 061101-1-8. https://doi.org/10.1115/1.4001656
  21. Gerdeen, J.C. (1979), "A critical evaluation of plastic behavior data and a united definition of plastic loads for pressure components", WRC Bulletin 254.
  22. Hencky, H. (1923), "Uber Einige Statisch Bestimmte Falle des Gleichgewichts in Plastischen Korpern", Z. Angew. Math. Mech., 3, 241-251. https://doi.org/10.1002/zamm.19230030401
  23. Hill, R. (1950), The Mathematical Theory of Plasticity, Oxford at the Clarendon Press.
  24. He, K.G. (1995), Design Basis for Pressure Vessel, China Machine Press, Beijing, China.
  25. Hechmer, J.L. and Hollinger, G.L. (1989), "Code evaluation of 3D stresses on a plane", Am. Soc. Mech. Eng., Press. Vessels Pip. Div. (Publication) PVP, 161, 33-46.
  26. Hechmer, J.L. and Hollinger, G.L. (1991), "The ASME code and 3D stress evaluation", ASME J. Press. Vessel Technol., 113(4), 481-487. https://doi.org/10.1115/1.2928784
  27. Hechmer, J.L. and Hollinger, G.L. (1998), "3D stress criteria guidelines for application", WRC Bulletin 429.
  28. Hodge, P.G. (1964), "Yield-point load determination by non-linear programming", Proceedings of the 11th International Congress of Applied Mechanics, Munich, Germany, pp. 554-561.
  29. Hollinger, G.L. and Hechmer, J.L. (2000), "Three-dimensional stress criteria-summary of the PVRC project", ASME J. Press. Vessel Technol., 122(1), 105-109. https://doi.org/10.1115/1.556157
  30. Hsu, K.H. and Mckinley, D.A. (1990), "SOAP-A computer program for classification of three dimension finite element stresses on a plane", PVP ASME, 185, 11-19.
  31. Kamaya, M., Suzuki, T. and Meshii, T. (2008), "Failure pressure of straight pipe with wall thinning under internal pressure", Int. J. Press. Vessel Pip., 85(9), 628-634. https://doi.org/10.1016/j.ijpvp.2007.11.005
  32. Khyabani, A. and Sadrnejad, S.A. (2009), "Finite element evaluation of residual stresses in thick plates, Int. J. Mech. Mat. Des., 5(3), 253-261. https://doi.org/10.1007/s10999-009-9099-1
  33. Kirkood, M.G. (1986), "Finite element stress analysis of an equal diameter branch pipe intersection subjected to out-of-plane and twisting moments", Strain Anal., 21(1), 171-183.
  34. Kirkood, M.G. (1989), "Techniques for measuring plastic loads in branch pipe connections loads by pressure and in-plane moments", Pipework Engineering and Operation, London, UK, pp. 197-208.
  35. Kroenke, W.C. (1973), "Classification of finite element stress according to ASME section III", Stress Categories the Winter Annual Meeting of the American Society Engineering, November.
  36. Li, N., Sang, Z.F. and Widera, G.E.O. (2008), "Study of plastic limit load on pressurized cylinders with lateral nozzle", ASME J. Press. Vessel Technol., 130(4), 041210-1-7. https://doi.org/10.1115/1.2967743
  37. Lu, M.W. and Xu, H. (2006), "Discussion on some important problems of design by analysis (1)", J. Pres. Ves. (China), 23(1), 15-19.
  38. Lyamin, A.V. and Sloan, S.W. (2002a), "Upper bound limit analysis using linear finite elements and nonlinear programming", Int. J. Numer. Anal. Meth. Geomech., 26(2), 181-216. https://doi.org/10.1002/nag.198
  39. Lyamin, A.V. and Sloan, S.W. (2002b), "Lower bound limit analysis using nonlinear programming", Int. J. Numer. Meth. Eng., 55(5), 573-611. https://doi.org/10.1002/nme.511
  40. Lynch, M.A. and Moffat, D.G. (2000), "Limit load for cracked piping branch junctions under pressure and branch out-of-plane bending", Int. J. Press. Vessels Pip., 77(5), 185-194. https://doi.org/10.1016/S0308-0161(00)00008-9
  41. Mackenzie, D., Boyle, J.T. and Spence, J. (1994), "Some recent developments in pressure vessel design by analysis", J. Pro. Mech. Eng., 208(15), 23-29. https://doi.org/10.1243/PIME_PROC_1994_208_206_02
  42. Miklus, S. and Kosel, F. (1991), "Plastic collapse of pipe bi-furcation", Int. J. Press. Vessels Pip., 79-92.
  43. Mura, T. and Lee, S.L. (1965), "Application of variational principles to limit analysis", Q. Appl. Math., 21(3), 243-248.
  44. Mura, T., Kao, J.S. and Lee, S.L. (1964), "Limit analysis of circular orthotropic plates", J. Eng. Mech. Div. ASCE, 90(5), 375-395.
  45. Mura, T., Rimawi, W.H. and Lee, S.L. (1965), "Extended theorems of limit analysis", Q. Appl. Math., 23(2), 171-179. https://doi.org/10.1090/qam/99943
  46. Muscat, M., Mackenzie, D. and Hamilton, R. (2003), "A work criterion plastic collapse", Int. J. Press. Vessels Pip., 80(1), 49-58. https://doi.org/10.1016/S0308-0161(02)00105-9
  47. Patel, D. M. and Kumar, D.B. (2014), "Pressure vessel limit load estimation by FEM and experimental method", Int. J. Innov. Res. Adv. Eng., 1(9), 109-114.
  48. Plancq, D. and Berton, M.N. (1998), "Limit analysis based on elastic compensation method of branch pipe tee connection under internal pressure and out-of-plane moment loading", Int. J. Press. Vessels Pip., 75(11), 819-825. https://doi.org/10.1016/S0308-0161(98)00085-4
  49. Prager, W. and Hodge, P.G. (1951), Theory of Perfectly Plastic Solids, Wiley, New York, NY, USA.
  50. Prandtl, L. (1923), "Anwendungsbeispiele Henckyschen Satz uber das Plastische Glei Zeitschr", Angkew. Mathematik u. Mechanik, 407.
  51. R5 (1990), Assessment Procedure for the High Temperature Response of Structures; Nuclear Electric plc, 2.
  52. Samo, M. and Franc, K. (1991), "Plastic collapse of pipe bifurcation", Int. J. Press. Vessels Pip., 48(1), 79-92. https://doi.org/10.1016/0308-0161(91)90059-B
  53. Save, M. (1972), "Experimental verification of plastic limit analysis of torispherical and toriconical heads", Press. Vessel Pip. Des. Anal. I, ASME, 1, 382-416.
  54. Schroeder, J. (1980), "A plastic modulus approach to experimental limit loads", ASME Paper No. 80-C2/PVP-1.
  55. Schroeder, J. (1985), "Experimental limit couples for branch moment loads on 4 in. ANSI B16.9 Tees", WRC Bulletin 304.
  56. Seshadri, R. and Marriott, D.L. (1993), "On Relating the Reference Stress, Limit Load and the ASME Stress Classification Concepts," Int. J. Press. Vessels Pip., 56, 387-408. https://doi.org/10.1016/0308-0161(93)90007-G
  57. Su, W.X., Zheng, J.Y. and Kai, F.M. (2005), "A 5% maximum principal strain criterion to prevent gross plastic deformation", Press. Vessel Technol., 22(12), 17-21.
  58. Townley, C.H.A., Findlay, G.E., Goodman, A.M. and Stanley, P. (1971), "Elastic-plastic computations a basic for design charts for torispherical pressure vessel ends", Proceedings of the Institution of Mechanical Engineers. Part E: Journal of Process Mechanical Engineering, 185(63), 869-877.
  59. Zhang, W.M., Lu, M.W. and Zhang, R.Y. (1989), "A zero-curvature criterion to determine the practical collapse load", Acta Mech. Solida Sin., 10(2), 152-159.
  60. Zouain, N., Herskovits, J., Borges, L.A. and Feijoo, R.A. (1993), "An iterative algorithm for limit analysis with nonlinear yield function", Int. J. Solids Struct., 30(10), 1397-1417. https://doi.org/10.1016/0020-7683(93)90220-2

피인용 문헌

  1. A finite element-based analysis approach for computing the remaining strength of the pressure equipment with a local thin area defect vol.131, pp.None, 2016, https://doi.org/10.1016/j.engfailanal.2021.105883