References
- Ahmadi, S.A. and Pourshahsavari, H. (2016), "Three-dimensional thermal buckling analysis of functionally graded cylindrical panels using differential quadrature method (DQM)", J. Theor. Appl. Mech., 54(1), 135-147.
- Bhagat, V., Jeyaraj, P. and Murigendrappa, S.M. (2016a), "Buckling and free vibration characteristics of a uniformly heated isotropic cylindrical panel", Procedia Enginering, 144, 474-481. https://doi.org/10.1016/j.proeng.2016.05.158
- Bhagat, V., Jeyaraj, P. and Murigendrappa, S.M. (2016b), "Buckling and vibration behavior of a nonuniformly heated isotropic cylindrical panel", Int. J. Struct. Eng. Mech., 57(3), 543-567. https://doi.org/10.12989/sem.2016.57.3.543
- Chang, J.S. and Chiu, W.C. (1991), "Thermal buckling analysis of antisymmetric laminated cylindrical shell panels", Int. J. Solid. Struct., 27(10), 1295-1309. https://doi.org/10.1016/0020-7683(91)90164-B
- Chen, L.W. and Chen, L.Y. (1987), "Thermal buckling of laminated cylindrical plates", Compos. Struct., 8(3), 189-205. https://doi.org/10.1016/0263-8223(87)90069-9
- Eslami, M.R. and Javaheri, R. (1991), "Buckling of composite cylindrical shells under mechanical and thermal loads", J. Therm. Stress., 22(6), 527-545. https://doi.org/10.1080/014957399280733
- Ganapathi, M., Patel, B. and Pawargi, D. (2002), "Dynamic analysis of laminated cross-ply composite noncircular thick cylindrical shells using higher-order theory", J. Solids Struct., 39(24), 5945-5962. https://doi.org/10.1016/S0020-7683(02)00495-X
- Ganesan, N. and Pradeep, V. (2005), "Buckling and vibration of circular cylindrical shells containing hot liquid", J. Sound Vib., 287(4-5), 845-863. https://doi.org/10.1016/j.jsv.2004.12.001
- Gupta, S.D. and Wang, I.C. (1973), "Thermal buckling of orthotropic cylindrical shells", Fibre Sci. Technol., 6(1), 39-45. https://doi.org/10.1016/0015-0568(73)90015-8
- Jeon, K.H.W., Byung H. and Lee, Y.S. (2010), "Free vibration characteristics of thermally loaded cylindrical shell", Mater. Complex Behav., 3, 139-148.
- Jeyaraj, P. (2013), "Buckling and free vibration behavior of an isotropic plate under non-uniform thermal load", Int. J. Struct. Stabil. Dyn., 12(6), 1250071: 1-16.
- Jooybar, N., Malekzadeh, P., Fiouz, A. and Vaghefi, M. (2016), "Thermal effect on free vibration of functionally graded truncated conical shell panels", Thin-Wall. Struct., 103, 45-61. https://doi.org/10.1016/j.tws.2016.01.032
- Kabir, H.R.H. (1998), "Free vibration response of shear deformable antisymmetric cross-ply cylindrical panels", J. Sound Vib., 217(4), 601-618. https://doi.org/10.1006/jsvi.1998.1722
- Katariya, P.V. and Panda, S.K. (2016), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircraft Eng. Aerosp. Technol., 88(1), 97-107. https://doi.org/10.1108/AEAT-11-2013-0202
- Khdeir, A.A. (2012), "Thermoelastic response of cross-ply laminated shells based on a rigorous shell theory", J. Therm. Stress., 35(11), 1000-1017. https://doi.org/10.1080/01495739.2012.720219
- Ko, W.I. (2004), "Thermal buckling analysis of rectangular panels subjected to humped temperature profile heating", Struct. Mech., 57, 1-34.
- Kurpa, L., Shmatko, T. and Timchenko, G. (2010), "Free vibration analysis of laminated shallow shells with complex shape using the R-functions method", Compos. Struct., 93(1), 225-233. https://doi.org/10.1016/j.compstruct.2010.05.016
- Lei, Z.X., Yu, J.L. and Liew, K.M. (2013), "Free vibration analysis of functionally graded carbon nanotubereinforced composite cylindrical panels", Int. J. Mater. Sci. Eng., 1(1), 36-40.
- Lei, Z., Zhang, L., Liew, K. and Yu, J. (2014), "Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element free kp-ritz method", Compos. Struct., 113, 328-338. https://doi.org/10.1016/j.compstruct.2014.03.035
- Matsunaga, H. (2007), "Thermal buckling of cross-ply laminated composite shallow shells according to a global higher-order deformation theory", Compos. Struct., 81(2), 210-221. https://doi.org/10.1016/j.compstruct.2006.08.008
- Mochida, Y., Ilanko, S., Duke, M. and Narita, Y. (2012), "Free vibration analysis of doubly curved shallow shells using the Superposition-Galerkin method", J. Sound Vib., 331(6), 1413-1425. https://doi.org/10.1016/j.jsv.2011.10.031
- Patel, B.P., Nath, Y. and Shukla, K.K. (2004), "Thermal buckling of laminated cross-ply oval cylindrical shell", Compos. Struct., 65(2), 217-229. https://doi.org/10.1016/j.compstruct.2003.10.018
- Patel, B.P., Nath, Y. and Shukla, K.K. (2007), "Thermo-elastic buckling characteristics of angle-ply laminated elliptical cylindrical shells", Compos. Struct., 77(1), 120-124. https://doi.org/10.1016/j.compstruct.2005.06.001
- Pradyumna, S. and Bandyopadhyay, J.N. (2010), "Free vibration and buckling of functionally graded shell panels in thermal environments", Int. J. Struct. Stabil. Dyn., 10(5), 1031-1053. https://doi.org/10.1142/S0219455410003889
- Rajanna, T., Banerjee, S., Desai, Y.M. and Prabhakara, D.L. (2016), "Vibration and buckling analyses of laminated panels with and without cutouts under compressive and tensile edge loads", Steel Compos. Struct., Int. J., 21(1), 37-55. https://doi.org/10.12989/scs.2016.21.1.037
- Shahab, S., Mirzaeifar, R. and Bahai H. (2009), "Coupled modification of natural frequencies and buckling loads of composite cylindrical panels", Int. J. Mech. Sci., 51(9-10), 708-717. https://doi.org/10.1016/j.ijmecsci.2009.08.002
- Shen, H.-S. (2012), "Thermal buckling and postbuckling behavior of functionally graded carbon nanotubereinforced composite cylindrical shells", Compos. Part B: Eng., 43(3), 1030-1038. https://doi.org/10.1016/j.compositesb.2011.10.004
- Shen, H.S. and Li, Q.S. (2002), "Thermomechanical postbuckling of shear deformable laminated cylindrical shells with local geometric imperfections", Int. J. Solids Struct., 39(17), 4525-4542. https://doi.org/10.1016/S0020-7683(02)00351-7
- Thangaratnam, R., Palaninathan, R. and Ramachandran, J. (1990), "Thermal buckling of laminated composite shells", Am. Inst. Aeronaut. Astronaut. J., 28(5), 859-860. https://doi.org/10.2514/3.25130
- Topal, U. (2012), "Frequency optimization for laminated composite plates using extended layerwise approach", Steel Compos. Struct., Int. J.,12(6), 541-548. https://doi.org/10.12989/scs.2012.12.6.541
- Topal, U. (2013), "Application of a new extended layerwise approach to thermal buckling load optimization of laminated composite plates", Steel Compos. Struct., Int. J., 14(3), 283-293. https://doi.org/10.12989/scs.2013.14.3.283
- Viswanathan, K.K., Lee, J.H., Aziz, Z.A. and Hossain, I. (2011), "Free vibration of symmetric angle-ply laminated cylindrical shells of variable thickness", Acta Mech., 221(3), 309-319. https://doi.org/10.1007/s00707-011-0505-z
- Yas, M., Pourasghar, A., Kamarian, S. and Heshmati, M. (2013), "Three-dimensional free vibration analysis of functionally graded nanocomposite cylindrical panels reinforced by carbon nanotube", Mater. Des., 49, 583-590. https://doi.org/10.1016/j.matdes.2013.01.001
- Zhang, L., Lei, Z., Liew, K. and Yu, J. (2014), "Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels", Compos. Struct., 111, 205-212. https://doi.org/10.1016/j.compstruct.2013.12.035
- Zhao, X. and Liew, K.M. (2010), "A mesh-free method for analysis of the thermal and mechanical buckling of functionally graded cylindrical shell panels", Computat. Mech., 45(4), 297-310. https://doi.org/10.1007/s00466-009-0446-8
- Zhao, X., Ng, T.Y. and Liew, K. (2004), "Free vibration of two-side simply- supported laminated cylindrical panels via the mesh-free kp-ritz method", Int. J. Mech. Sci., 46(1), 123-142. https://doi.org/10.1016/j.ijmecsci.2004.02.010
Cited by
- Thermal Buckling of Nanocomposite Stiffened Cylindrical Shells Reinforced by Functionally Graded Wavy Carbon Nanotubes with Temperature-Dependent Properties vol.7, pp.12, 2017, https://doi.org/10.3390/app7121223
- Experimental investigation on buckling strength of cylindrical panel: Effect of non-uniform temperature field vol.99, 2018, https://doi.org/10.1016/j.ijnonlinmec.2017.12.005
- Vibrational characteristics of truss core sandwich panel under thermal environment: effect of core topology pp.2195-2698, 2018, https://doi.org/10.1007/s40435-018-0488-x
- Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model vol.33, pp.6, 2016, https://doi.org/10.12989/scs.2019.33.6.805
- Modal analysis of cylindrical panels at elevated temperatures under nonuniform heating conditions: Experimental investigation vol.235, pp.5, 2021, https://doi.org/10.1177/0954406220936738
- Meta-heuristic optimization of buckling and fundamental frequency of laminated cylindrical panel under graded temperature fields vol.29, pp.9, 2016, https://doi.org/10.1177/0967391120974155