Acknowledgement
Supported by : National Research Foundation of Korea (NRF)
References
- Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., Int. J., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
- Akgoz, B. and Civalek, O. (2015a), "A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory", Acta Mechanica, 226(7), 2277-2294. https://doi.org/10.1007/s00707-015-1308-4
- Akgoz, B. and Civalek, O. (2015b), "A novel microstructure-dependent shear deformable beam model", Int. J. Mech. Sci., 99, 10-20. https://doi.org/10.1016/j.ijmecsci.2015.05.003
- Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
- Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on a strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 221-228. https://doi.org/10.1016/j.compstruct.2011.06.024
- Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R. and Darabi, M.A. (2014), "Nonlinear vibrations of functionally graded Mindlin microplates based on the modified couple stress theory", Compos. Struct., 114, 124-134. https://doi.org/10.1016/j.compstruct.2014.04.013
- Asghari, M. (2012), "Geometrically nonlinear micro-plate formulation based on the modified couple stress theory", Int. J. Eng. Sci., 51, 292-309. https://doi.org/10.1016/j.ijengsci.2011.08.013
- Asghari, M. and Taati, E. (2013), "A size-dependent model for functionally graded microplates for mechanical analyses", J. Vib. Control, 19(11), 1614-1632. https://doi.org/10.1177/1077546312442563
- Bao, G. and Wang, L. (1995), "Multiple cracking in functionally graded ceramic/metal coatings", Int. J. Solids Struct., 32, 2853-2871. https://doi.org/10.1016/0020-7683(94)00267-Z
- Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Composites: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
- Bolotin, V.V. (1964), The Dynamic Stability of Elastic Systems, Holden-Day, San Francisco, CA, USA.
- Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
- Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
- Chi, S.H. and Chung, Y.L. (2002), "Cracking in sigmoid functionally graded coating", J. Mech., 18, 41-53.
- Chong, A.C.M. and Lam, D.C.C. (1999), "Strain gradient plasticity effect in indentation hardness of polymers", J. Mater. Res., 14(10), 4103-4110. https://doi.org/10.1557/JMR.1999.0554
- Chung, Y.L. and Chi, S.H. (2001), "The residual stress of functionally graded materials", J. Chinese Inst. Civil Hydraul. Eng., 13, 1-9.
- Delale, F. and Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane", ASME J. Appl. Mech., 50(3), 609-614. https://doi.org/10.1115/1.3167098
- Dey, P. and Singha, M.K. (2006), "Dynamic stability analysis of composite skew plates subjected to periodic in-plane load", Thin-Wall. Struct., 44(9), 937-942. https://doi.org/10.1016/j.tws.2006.08.023
- Erdogan, F. and Chen, Y.F. (1998), Interfacial Cracking of FGM/Metal Bonds, (K. Kokini Ed.), Ceramic Coating.
- Fares, M.E., Elmarghany, M.Kh. and Atta, D. (2009), "An efficient and simple refined theory for bending and vibration of functionally graded plates", Compos. Struct., 91(3), 296-305. https://doi.org/10.1016/j.compstruct.2009.05.008
- Feldman, E. and Aboudi, J. (1997), "Buckling analysis of functionally graded plates subjected to uniaxial loading", Compos. Struct., 38(1), 29-36. https://doi.org/10.1016/S0263-8223(97)00038-X
- Fleck, N.A., Muller, G.M., Ashby, M.F. and Hutchinson, J.W. (1994), "Strain gradient plasticity: Theory and experiment", Acta Metallurgica Et Materialia, 42(2), 475-487. https://doi.org/10.1016/0956-7151(94)90502-9
- Fu, Y. and Zhang, J. (2010), "Modeling and analysis of microtubules based on a modified couple stress theory", Phys. E: Low-Dimens. Syst. Nanostruct., 42(5), 1741-1745. https://doi.org/10.1016/j.physe.2010.01.033
- Han, S.C., Lomboy, G.R. and Kim, K.D. (2008), "Mechanical vibration and buckling analysis of FGM plates and shells using a four-node quasi-conforming shell element", Int. J. Struct. Stab. Dyn., 8(2), 203-229. https://doi.org/10.1142/S0219455408002624
- Han, S.C., Lee, W.H. and Park, W.T. (2009), "Non-linear analysis of laminated composite and sigmoid functionally graded anisotropic structures using a higher-order shear deformable natural Lagrangian shell element", Compos. Struct., 89(1), 8-19. https://doi.org/10.1016/j.compstruct.2008.08.006
- Han, S.C., Park, W.T. and Jung, W.Y. (2016), "3D graphical dynamic responses of FGM plates on Pasternak elastic foundation based on quasi-3D shear and normal deformation theory", Compos. Part B, 95, 324-334. https://doi.org/10.1016/j.compositesb.2016.04.018
- Hirano, T. and Yamada, T. (1988), "Multi-paradigm expert system architecture based upon the inverse design concept", International Workshop on Artificial Intelligence for Industrial Applications, Hitachi, Japan.
- Javaheri, R. and Eslami, M.R. (2002), "Thermal buckling of functionally graded plates based on higher order theory", J. Therm. Stress., 25(7), 603-625. https://doi.org/10.1080/01495730290074333
- Jin, Z.H. and Paulino, G.H. (2001), "Transient thermal stress analysis of an edge crack in a functionally graded material", Int. J. Fracture, 107(1), 73-98. https://doi.org/10.1023/A:1026583903046
- Jung, W.Y. and Han, S.C. (2014), "Transient analysis of FGM and laminated composite structures using a refined 8-node ANS shell element", Compos. Part B, 56, 372-383. https://doi.org/10.1016/j.compositesb.2013.08.044
- Jung, W.Y. and Han, S.C. (2015), "Static and eigenvalue problems of Sigmoid Functionally Graded Materials (S-FGM) micro-scale plates using the modified couple stress theory", Appl. Math. Model., 39(12), 3506-3524. https://doi.org/10.1016/j.apm.2014.11.056
- Jung, W.Y., Park, W.T. and Han, S.C. (2014), "Bending and vibration analysis of S-FGM microplates embedded in Pasternak elastic medium using the modified couple stress theory", Int. J. Mech. Sci., 87, 150-162. https://doi.org/10.1016/j.ijmecsci.2014.05.025
- Kahrobaiyan, M.H., Rahaeifard, M., Tajalli, S.A. and Ahmadian, M.T. (2012), "A strain gradient functionally graded Euler-Bernoulli beam formulation", Int. J. Eng. Sci., 52, 65-76. https://doi.org/10.1016/j.ijengsci.2011.11.010
- Ke, L.L. and Wang, Y.S. (2011), "Flow-induced vibration and instability of embedded double walled carbon nanotubes based on a modified couple stress theory", Phys. E: Low-Dimens. Syst. Nanostruct., 43(5), 1031-1039. https://doi.org/10.1016/j.physe.2010.12.010
- Ke, L.L., Wang, Y.S. and Wang, Z.D. (2011), "Thermal effect on free vibration and buckling of sizedependent microbeams", Phys. E: Low-Dimens. Syst. Nanostruct., 43(7), 1387-1393. https://doi.org/10.1016/j.physe.2011.03.009
- Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2012), "Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory", J. Sound Vib., 331(1), 94-106. https://doi.org/10.1016/j.jsv.2011.08.020
- Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
- Lee, W.H., Han, S.C. and Park, W.T. (2015), "A study of dynamic instability for sigmoid functionally graded material plates on elastic foundation", J. Computat. Struct. Eng. Inst. Korea, 28(1), 85-92. [In Korean] https://doi.org/10.7734/COSEIK.2015.28.1.85
- Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids, 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
- Ma, H.M., Gao, X.L. and Reddy, J.N. (2011), "A non-classical Mindlin plate model based on a modified couple stress theory", Acta Mech., 220(1-4), 217-235. https://doi.org/10.1007/s00707-011-0480-4
- Malekzadeh, P. and Shojaee, M. (2013), "Free vibration of nanoplates based on a nonlocal two-variable refined plate theory", Compos. Struct., 95, 443-452. https://doi.org/10.1016/j.compstruct.2012.07.006
- Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2011), "Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory", Compos. Struct., 94(1), 37-49. https://doi.org/10.1016/j.compstruct.2011.07.020
- Matsunaga, H. (2008), "Free vibration and stability of functionally graded plates according to a 2-D higherorder deformation theory", Compos. Struct., 82(4), 499-512. https://doi.org/10.1016/j.compstruct.2007.01.030
- Mindlin, R.D. (1964), "Microstructure in linear elasticity", Arch Rational Mech. Anal., 16(1), 51-78. https://doi.org/10.1007/BF00248490
- Nedri, K., El Meiche, N. and Tounsi, A. (2014), "Free vibration analysis of laminated composite plates resting on elastic foundations by using a refined hyperbolic shear deformation theory", Mech. Compos. Mater., 49(6), 641-650. https://doi.org/10.1007/s11029-013-9380-0
- Pasternak, P.L. (1954), On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants, Gos. Izd. Lip. po Strait i Arkh. [In Russian]
- Praveen, G.N. and Reddy, J.N. (1998), "Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates", Int. J. Solid. Struct., 35(33), 4457-4476. https://doi.org/10.1016/S0020-7683(97)00253-9
- Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, (2nd Ed.), CRC Press, Boca Raton, FL, USA.
- Sahmani, S. and Ansari, R. (2013), "On the free vibration response of functionally graded higher-order shear deformable microplates based on the strain gradient elasticity theory", Compos. Struct., 95, 430-442. https://doi.org/10.1016/j.compstruct.2012.07.025
- Sahmani, S., Ansari, R., Gholami, R. and Darvizeh, A. (2013), "Dynamic stability analysis of functionally graded higher-order shear deformable microshells based on the modified couple stress elasticity theory", Compos.: Part B, 51, 44-53. https://doi.org/10.1016/j.compositesb.2013.02.037
- Salehipour, H., Nahvi, H. and Shahidi, A.R. (2015), "Exact closed-form free vibration analysis for functionally graded micro/nano plates based on modified couple stress and three-dimensional elasticity theories", Compos. Struct., 124, 283-291. https://doi.org/10.1016/j.compstruct.2015.01.015
- Shen, H.S. and Wang, Z.X. (2012), "Assessment of Voigt and Mori-Tanaka models for vibration analysis of functionally graded plates", Compos. Struct., 94(7), 2197-2208. https://doi.org/10.1016/j.compstruct.2012.02.018
- Simsek, M. and Reddy, J.N. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002
- Stolken, J.S. and Evans, A.G. (1998), "Microbend test method for measuring the plasticity length scale", Acta Metallurgica Et Materialia, 46(14), 5109-5115. https://doi.org/10.1016/S1359-6454(98)00153-0
- Thai, H.T. and Choi, D.H. (2013), "Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory", Compos. Struct., 95, 142-153. https://doi.org/10.1016/j.compstruct.2012.08.023
- Thai, H.T. and Kim, S.E. (2015), "A review of theories for the modeling and analysis of functionally graded plates and shells", Compos. Struct., 128, 70-86. https://doi.org/10.1016/j.compstruct.2015.03.010
- Thai, H.T., Vo, T.P., Nguyen, T.K. and Lee, J. (2015), "Size-dependent behavior of functionally graded sandwich microbeams based on the modified couple stress theory", Compos. Struct., 123, 337-349. https://doi.org/10.1016/j.compstruct.2014.11.065
- Tsiatas, G.C. (2009), "A new Kirchhoff plate model based on a modified couple stress theory", Int. J. Solids Struct., 46(13), 2757-2764. https://doi.org/10.1016/j.ijsolstr.2009.03.004
- Winkler, E. (1867), Theory of Elasticity and Strength, Dominicus, Prague, Czech Republic.
- Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory of elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
Cited by
- Determination of the excitation frequencies of laminated orthotropic non-homogeneous conical shells vol.132, 2018, https://doi.org/10.1016/j.compositesb.2017.08.013
- Vibration and mode shape analysis of sandwich panel with MWCNTs FG-reinforcement core vol.25, pp.3, 2017, https://doi.org/10.12989/scs.2017.25.3.347
- Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities vol.5, pp.4, 2017, https://doi.org/10.12989/anr.2017.5.4.393
- Effects of CNTs waviness and aspect ratio on vibrational response of FG-sector plate vol.25, pp.6, 2016, https://doi.org/10.12989/scs.2017.25.6.649
- Nonlinear free and forced vibration analysis of microbeams resting on the nonlinear orthotropic visco-Pasternak foundation with different boundary conditions vol.28, pp.2, 2018, https://doi.org/10.12989/scs.2018.28.2.149
- Vibration analysis of sandwich sectorial plates considering FG wavy CNT-reinforced face sheets vol.28, pp.5, 2016, https://doi.org/10.12989/scs.2018.28.5.541
- Free vibration of imperfect sigmoid and power law functionally graded beams vol.30, pp.6, 2019, https://doi.org/10.12989/scs.2019.30.6.603
- Non-stationary vibration and super-harmonic resonances of nonlinear viscoelastic nano-resonators vol.70, pp.5, 2016, https://doi.org/10.12989/sem.2019.70.5.623
- Static stability analysis of axially functionally graded tapered micro columns with different boundary conditions vol.33, pp.1, 2019, https://doi.org/10.12989/scs.2019.33.1.133
- Vibration analysis of FG porous rectangular plates reinforced by graphene platelets vol.34, pp.2, 2020, https://doi.org/10.12989/scs.2020.34.2.215
- Influence of porosity distribution on vibration analysis of GPLs-reinforcement sectorial plate vol.35, pp.1, 2016, https://doi.org/10.12989/scs.2020.35.1.111
- Vibrational characteristic of FG porous conical shells using Donnell's shell theory vol.35, pp.2, 2016, https://doi.org/10.12989/scs.2020.35.2.249
- Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns vol.35, pp.2, 2016, https://doi.org/10.12989/scs.2020.35.2.295
- Vibration behavior of functionally graded sandwich beam with porous core and nanocomposite layers vol.36, pp.1, 2020, https://doi.org/10.12989/scs.2020.36.1.001
- Vibration behavior of trapezoidal sandwich plate with functionally graded-porous core and graphene platelet-reinforced layers vol.36, pp.1, 2016, https://doi.org/10.12989/scs.2020.36.1.047
- On post-buckling characteristics of functionally graded smart magneto-electro-elastic nanoscale shells vol.9, pp.1, 2016, https://doi.org/10.12989/anr.2020.9.1.033
- Peridynamic analysis of dynamic fracture behaviors in FGMs with different gradient directions vol.75, pp.3, 2016, https://doi.org/10.12989/sem.2020.75.3.339
- On scale-dependent stability analysis of functionally graded magneto-electro-thermo-elastic cylindrical nanoshells vol.75, pp.6, 2016, https://doi.org/10.12989/sem.2020.75.6.659
- Vibration analysis of sandwich sector plate with porous core and functionally graded wavy carbon nanotube-reinforced layers vol.37, pp.6, 2016, https://doi.org/10.12989/scs.2020.37.6.711
- On bending analysis of perforated microbeams including the microstructure effects vol.76, pp.6, 2020, https://doi.org/10.12989/sem.2020.76.6.765
- Vibration analysis of damaged core laminated curved panels with functionally graded sheets and finite length vol.38, pp.5, 2016, https://doi.org/10.12989/scs.2021.38.5.477