DOI QR코드

DOI QR Code

UV 레이저 노출조건에 따른 FBG 센서의 방사선 영향

Radiation Effects on Fiber Bragg Grating Sensors by Irradiation Conditions of UV Laser

  • Kim, Jong-Yeol (Department of Nuclear Convergence Technology Development, Korea Atomic Energy Research Institute (KAERI)) ;
  • Lee, Nam-Ho (Department of Nuclear Convergence Technology Development, Korea Atomic Energy Research Institute (KAERI)) ;
  • Jung, Hyun-Kyu (Department of Nuclear Convergence Technology Development, Korea Atomic Energy Research Institute (KAERI))
  • 투고 : 2016.09.13
  • 심사 : 2016.09.27
  • 발행 : 2016.12.31

초록

본 논문에서는 격자 공정 중에 KrF 엑시머 UV 레이저 노출시간에 따른 광섬유 브래그 격자의 $Co^{60}$ 감마방사선 영향을 연구하였다. 광섬유 브래그 격자는 게르마늄이 첨가된 일반 광섬유를 이용하였으며, UV KrF 엑시머 레이저 노출시간(30, 60, 90, 120초)을 달리하여 제작하였다. 제작된 광섬유 브래그 격자에 106 Gy/min 선량률로 총 선량 34.3 kGy 감마선을 조사한 후 방사선에 의한 온도감도 계수와 브래그 파장 변화를 분석하였다. 실험결과를 통하여, 격자 공정을 위한 UV 레이저 노출시간이 광섬유 브래그 격자의 방사선 민감도에 큰 영향을 줄 수 있다는 것을 확인하였다. 레이저 노출조건 변화에 따른 방사선에 의한 광섬유 브래그 파장의 변화는 최대 50 % 이상의 차이를 보였다.

We studied the effect of $Co^{60}$ gamma-radiation on the fiber Bragg gratings (FBGs) by irradiation time of UV Krypton fluoride (KrF) excimer laser among grating processing parameters. The FBGs were fabricated in a different UV laser irradiation time at 30, 60, 90, and 120 seconds using the same commercial Ge-doped silica core fiber (SMF-28e). It was exposed to gamma-radiation up to a high dose of 34.3 kGy at the dose rate of 106 Gy/min, and then it was analyzed radiation effects by measuring the radiation-induced change in the temperature sensitivity coefficient and Bragg wavelength shift. According to the experimental results, We confirmed that the UV laser irradiation period for grating inscription has a highly effect on the radiation sensitivity of the FBGs. The radiation-induced Bragg wavelength shift by the change of laser irradiation conditions showed a difference more than about 50 %.

키워드

참고문헌

  1. H. Henschel, S. K. Hoffgen, K. Krebber, J. Kuhnhenn and U. Weinand, "Influence of fiber composition and grating fabrication on the radiation sensitivity of fiber Bragg gratings," IEEE Transactions on Nuclear Science, vol. 55, no. 4, pp. 2235-2242, Sep. 2008. https://doi.org/10.1109/TNS.2008.2001039
  2. A. I. Gusarov, D. B. Doyle, N. K. Karafolas, and F. Berghmans, "Fibers-Bragg gratings as a candidate technology for satellite communication payloads: radiation effects issues," Conference on Photonics for Space Environments VII, SPIE Proceedings, vol. 4134, pp. 253-260, Oct. 2000.
  3. P. Niewczas, and M. Johnston, "Effects of neutron-gamma radiation on fiber Bragg grating Sensors: A Review," IEEE Sensors Journal, vol. 12, no. 11, pp. 3248-3256, Aug. 2012. https://doi.org/10.1109/JSEN.2012.2214030
  4. A. F. Fernamdez, F. Berghmans, A. I. Gusarov, et. al., "Multiplexed fibre Bragg grating sensors for in-core thermometry in nuclear reactors," Conference on Fiber Optic Sensor Technology II, SPIE Proceedings, vol. 4204A, pp. 40-49, Mar. 2001.
  5. A. I. Gusarov, F. Berghmans, O. Deparis, Y. Defosse, P. Megret, M. Decreton, and M. Blondel, "High total dose radiation effects on temperature sensing fiber Bragg gratings," IEEE Photonics technology letters, vol. 11, pp. 1159-1161, Sep. 1999. https://doi.org/10.1109/68.784237
  6. A. Gusarov, S. Vasiliev, O. Medvedkov, I. Mckenzie and F. Berghmans et. al., "Stabilization of fiber bragg gratings against gamma radiation," IIEEE Transactions on Nuclear Science, vol. 55, no. 4, pp 2205-2212, Aug. 2008. https://doi.org/10.1109/TNS.2008.2001038
  7. S. J. Mihailov, "Fiber Bragg grating sensors for harsh environments," Sensors 2012, vol. 12, no. 2, pp. 1898-1918, Feb. 2012.
  8. A. Gusarov, D. Starodubov, F. Berghmans, O. Deparis, Y. Defosse, A. F. Fernandez,d, M. Decreton, P. Megret, M. Blondel, "Comparative study of the MGy dose level ${\gamma}$-radiation effect on FBGs written in different fibres," in Proceedings of 13rd International Conference on Optical Fibre Sensors, Kyongju, Korea, pp. 608-611, Apr. 1999.
  9. IEC, "Optical fibres-Guidance for nuclear radiation tests," IEC/TR 62283, pp. 27-28, Jun. 2010.
  10. A. Morana, S. Girard, E. Marin, C. Marcandella, J. Perisse, J.-R. Mace, A. Boukenter, M. Cannas, and Y. Ouerdane, "Radiation hardening of FBG in harsh environments," in Proceedings of 23rd International Conference on Optical Fibre Sensors, vol. 9157, pp. 1-4, Jun. 2014.
  11. H. Henschel, S. K. Hoeffgen, K. Krebber, J. Kuhnhenn, and U. Weinand, "Influence of fiber composition and grating fabrication on the radiation sensitivity of fiber Bragg gratings," IEEE Transactions on Nuclear Science, vol. 55, no. 4, pp. 2235-2242, Aug. 2008. https://doi.org/10.1109/TNS.2008.2001039
  12. TIA/EIA Standard 455-64, Procedure for Measuring Radiation- Induced Attenuation in Optical Fibers and Optical Cables, TIA, Sep. 2002.
  13. J. Y. Kim, N. H. Lee, H. K. Jung, "Radiation effects on fiber Bragg grating sensors written in UV KrF laser process Condition," Journal of the Korea Institute of Information and Communication Engineering, pp. 161-166, vol. 20, no. 1, Jan. 2016. https://doi.org/10.6109/jkiice.2016.20.1.161
  14. G. Y. Buymistriuc, "Radiation-Hard and Intelligent Optical Fiber Sensors for Nuclear Power Plants," in Nuclear Power - Control, Reliability and Human Factors, InTech Pub., ch 7, pp. 119-144, Sep. 2011.