DOI QR코드

DOI QR Code

Potential applications of radioprotective phytochemicals from marine algae

  • Oh, Jae-Young (Department of Marine Life Science, Jeju National University) ;
  • Fernando, I.P. Shanura (Department of Marine Life Science, Jeju National University) ;
  • Jeon, You-Jin (Department of Marine Life Science, Jeju National University)
  • Received : 2016.10.12
  • Accepted : 2016.12.01
  • Published : 2016.12.15

Abstract

The use of ionizing radiation and radioactive elements is becoming increasingly popular with the rapid developments in nuclear technology, radiotherapy, and radio diagnostic methods. However, ionizing radiation can directly or indirectly cause life-threatening complications such as cancer, radiation burns, and impaired immunity. Environmental contamination with radioactive elements and the depletion of ozone layer also contribute to the increased levels of radiation exposure. Radioprotective natural products have particularly received attention for their potential usefulness in counteracting radiation-induced damage because of their reduced toxicity compared with most drugs currently in use. Moreover, radioprotective substances are used as ingredients in cosmetic formulations in order to provide protection against ultraviolet radiation. Over the past few decades, the exploration of marine algae has revealed the presence of radioprotective phytochemicals, such as phlorotannins, polysaccharides, carotenoids and other compounds. With their promising radioprotective effects, marine algae could be a future source for discovering potential radioprotective substances for development as useful in therapeutics.

Keywords

References

  1. Abad, L. V., Kudo, H., Saiki, S., Nagasawa, N., Tamada, M., Katsumura, Y., Aranilla, C. T., Relleve, L. S. & De La Rosa, A. M. 2009. Radiation degradation studies of carrageenans. Carbohydr. Polym. 78:100-106. https://doi.org/10.1016/j.carbpol.2009.04.009
  2. Ahn, M., Moon, C., Yang, W., Ko, E.-J., Hyun, J. W., Joo, H. G., Jee, Y., Lee, N. H., Park, J. W., Ko, R. K., Kim, G. O. & Shin, T. 2011. Diphlorethohydroxycarmalol, isolated from the brown algae Ishige okamurae, protects against radiation-induced cell damage in mice. Food Chem. Toxicol. 49:864-870. https://doi.org/10.1016/j.fct.2010.12.008
  3. Barrow, C. & Shahidi, F. 2007. Marine nutraceuticals and functional foods. CRC Press, Boca Raton, FL, 512 pp.
  4. Belay, A., Ota, Y., Miyakawa, K. & Shimamatsu, H. 1993. Current knowledge on potential health benefits of Spirulina. J. Appl. Phycol. 5:235-241. https://doi.org/10.1007/BF00004024
  5. Ben-Amotz, A., Yatziv, S., Sela, M., Greenberg, S., Rachmilevich, B., Shwarzman, M. & Weshler, Z. 1998. Effect of natural ${\beta}$-carotene supplementation in children exposed to radiation from the Chernobyl accident. Radiat. Environ. Biophys. 37:187-193. https://doi.org/10.1007/s004110050116
  6. Bonotto, S., Robbrecht, V., Nuyts, G., Cogneau, M. & van der Ben, D. 1988. Uptake of technetium by marine algae: autoradiographic localization. Mar. Pollut. Bull. 19:61-65. https://doi.org/10.1016/0025-326X(88)90781-3
  7. Bulteau, A.-L., Moreau, M., Saunois, A., Nizard, C. & Friguet, B. 2006. Algae extract-mediated stimulation and protection of proteasome activity within human keratinocytes exposed to UVA and UVB irradiation. Antioxid. Redox Signal. 8:136-143. https://doi.org/10.1089/ars.2006.8.136
  8. Byon, Y.-Y., Kim, M.-H., Yoo, E.-S., Hwang, K.-K., Jee, Y., Shin, T. & Joo, H.-G. 2008. Radioprotective effects of fucoidan on bone marrow cells: improvement of the cell survival and immunoreactivity. J. Vet. Sci. 9:359-365. https://doi.org/10.4142/jvs.2008.9.4.359
  9. Chertkov, K. S., Gvozdeva, N. I., Fedorenko, B. S. & Preobrazhenskii, Y. Y. 1986. Radioprotective and therapeutic efficacy of carrageenan during exposure to proton radiation. Kosm. Biol. Aviakosm. Med. 20:84-86.
  10. Christaki, E., Bonos, E., Giannenas, I. & Florou-Paneri, P. 2013. Functional properties of carotenoids originating from algae. J. Sci. Food Agric. 93:5-11. https://doi.org/10.1002/jsfa.5902
  11. Christensen, D. M., Iddins, C. J. & Sugarman, S. L. 2014. Ionizing radiation injuries and illnesses. Emerg. Med. Clin. North Am. 32:245-265. https://doi.org/10.1016/j.emc.2013.10.002
  12. Dittmann, K. H., Gueven, N., Mayer, C. & Rodemann, H.-P. 2001. Characterization of the amino acids essential for the photo-and radioprotective effects of a Bowman-Birk protease inhibitor-derived nonapeptide. Protein Eng. 14:157-160. https://doi.org/10.1093/protein/14.3.157
  13. Elyakov, G. B. & Stonik, V. A. 2003. Marine bioorganic chemistry as the base of marine biotechnology. Russ. Chem. Bull. 52:1-19. https://doi.org/10.1023/A:1022433124762
  14. Eom, S.-H., Moon, S.-Y., Lee, D.-S., Kim, H.-J., Park, K., Lee, E.-W., Kim, T. H., Chung, Y.-H., Lee, M.-S. & Kim, Y.-M. 2015. In vitro antiviral activity of dieckol and phlorofucofuroeckol-A isolated from edible brown alga Eisenia bicyclis against murine norovirus. Algae 30:241-246. https://doi.org/10.4490/algae.2015.30.3.241
  15. Ewing, D. & Jones, S. R. 1987. Superoxide removal and radiation protection in bacteria. Arch. Biochem. Biophys. 254:53-62. https://doi.org/10.1016/0003-9861(87)90080-4
  16. Fernando, I. P. S., Kim, M., Son, K.-T., Jeong, Y. & Jeon, Y.-J. 2016a. Antioxidant activity of marine algal polyphenolic compounds: a mechanistic approach. J. Med. Food 19:615-628. https://doi.org/10.1089/jmf.2016.3706
  17. Fernando, I. P. S., Nah, J.-W. & Jeon, Y.-J. 2016b. Potential anti-inflammatory natural products from marine algae. Environ. Toxicol. Pharmacol. 48:22-30. https://doi.org/10.1016/j.etap.2016.09.023
  18. Fortin, C., Dutels, L. & Garnier-Laplace, J. 2004. Uranium complexation and uptake by a green alga in relation to chemical speciation: the importance of the free uranyl ion. Environ. Toxicol. Chem. 23:974-981. https://doi.org/10.1897/03-90
  19. Guimaraes, J. R. D. & Penna-Franca, E. 1985. 137Cs, 60Co and 125I bioaccumulation by seaweeds from the Angra dos Reis nuclear power plant region. Mar. Environ. Res. 16:77-93. https://doi.org/10.1016/0141-1136(85)90010-8
  20. Gutteridge, J. M. 1995. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin. Chem. 41:1819-1828.
  21. Heo, S.-J., Cha, S.-H., Lee, K.-W. & Jeon, Y.-J. 2006. Antioxidant activities of red algae from Jeju Island. Algae 21:149-156. https://doi.org/10.4490/ALGAE.2006.21.1.149
  22. Heo, S.-J. & Jeon, Y.-J. 2009. Protective effect of fucoxanthin isolated from Sargassum siliquastrum on UV-B induced cell damage. J. Photochem. Photobiol. B Biol. 95:101-107. https://doi.org/10.1016/j.jphotobiol.2008.11.011
  23. Heo, S.-J., Ko, S.-C., Cha, S.-H., Kang, D.-H., Park, H.-S., Choi, Y.-U., Kim, D., Jung, W.-K. & Jeon, Y.-J. 2009. Effect of phlorotannins isolated from Ecklonia cava on melanogenesis and their protective effect against photo-oxidative stress induced by UV-B radiation. Toxicol. In Vitro 23:1123-1130. https://doi.org/10.1016/j.tiv.2009.05.013
  24. Hollriegl, V., Rohmuss, M., Oeh, U. & Roth, P. 2004. Strontium biokinetics in humans: influence of alginate on the uptake of ingested strontium. Health Phys. 86:193-196. https://doi.org/10.1097/00004032-200402000-00011
  25. Ichihashi, M., Ueda, M., Budiyanto, A., Bito, T., Oka, M., Fukunaga, M., Tsuru, K. & Horikawa, T. 2003. UV-induced skin damage. Toxicology 189:21-39. https://doi.org/10.1016/S0300-483X(03)00150-1
  26. Ivanova, K. G., Stankova, K. G., Nikolov, V. N., Georgieva, R. T., Minkova, K. M., Gigova, L. G., Rupova, I. T. & Boteva, R. N. 2010. The biliprotein C-phycocyanin modulates the early radiation response: a pilot study. Mutat. Res. 695:40-45. https://doi.org/10.1016/j.mrgentox.2009.11.002
  27. Jagetia, G. C. 2007. Radioprotective potential of plants and herbs against the effects of ionizing radiation. J. Clin. Biochem. Nutr. 40:74-81. https://doi.org/10.3164/jcbn.40.74
  28. Jeong, J., Yang, W., Ahn, M., Kim, K. C., Hyun, J. W., Kim, S. -H., Moon, C. & Shin, T. 2011. Protective effect of the methanol extract of Polyopes lancifolia (Harvey) kawaguchi et wang against ionizing radiation-induced mouse gastrointestinal injury. Korean J. Vet. Res. 51:177-183.
  29. Kandasamy, S., Khan, W., Kulshreshtha, G., Evans, F., Critchley, A. T., Fitton, J., Stringer, D. N., Gardiner, V.-A. & Prithiviraj, B. 2015. The fucose containing polymer (FCP) rich fraction of Ascophyllum nodosum (L.) Le Jol. protects Caenorhabditis elegans against Pseudomonas aeruginosa by triggering innate immune signaling pathways and suppression of pathogen virulence factors. Algae 30:147-161. https://doi.org/10.4490/algae.2015.30.2.147
  30. Kang, K. A., Zhang, R., Chae, S., Lee, S. J., Kim, J., Kim, J., Jeong, J., Lee, J., Shin, T., Lee, N. H. & Hyun, J. W. 2010. Phloroglucinol (1,3,5-trihydroxybenzene) protects against ionizing radiation-induced cell damage through inhibition of oxidative stress in vitro and in vivo. Chem.-Biol. Interact. 185:215-226. https://doi.org/10.1016/j.cbi.2010.02.031
  31. Kang, K. A., Zhang, R., Lee, K. H., Chae, S., Kim, B. J., Kwak, Y. S., Park, J. W., Lee, N. H. & Hyun, J. W. 2006. Protective effect of triphlorethol-A from Ecklonia cava against ionizing radiation in vitro. J. Radiat. Res. 47:61-68. https://doi.org/10.1269/jrr.47.61
  32. Kang, M.-C., Kim, K.-N., Wijesinghe, W. A. J. P., Yang, X., Ahn, G. & Jeon, Y.-J. 2014. Protective effect of polyphenol extracted from Ecklonia cava against ethanol induced oxidative damage in vitro and in zebrafish model. J. Funct. Foods 6:339-347. https://doi.org/10.1016/j.jff.2013.10.025
  33. Kang, N., Lee, J.-H., Lee, W., Ko, J.-Y., Kim, E.-A., Kim, J.-S., Heu, M.-S., Kim, G. H. & Jeon, Y.-J. 2015. Gallic acid isolated from Spirogyra sp. improves cardiovascular disease through a vasorelaxant and antihypertensive effect. Environ. Toxicol. Pharmacol. 39:764-772. https://doi.org/10.1016/j.etap.2015.02.006
  34. Kim, J., Moon, C., Kim, H., Jeong, J., Lee, J., Kim, J., Hyun, J. W., Park, J. W., Moon, M. Y., Lee, N. H., Kim, S. H., Jee, Y. & Shin, T. 2008. The radioprotective effects of the hexane and ethyl acetate extracts of Callophyllis japonica in mice that undergo whole body irradiation. J. Vet. Sci. 9:281-284. https://doi.org/10.4142/jvs.2008.9.3.281
  35. Kuznetsova, T. A., Krylova, N. V., Besednova, N. N., Vasil'eva, V. N., Zviagintseva, T. N., Krashevskii, S. & Eliakova, L. A. 1994. The effect of translam on the natural resistance indices of the irradiated organism. Radiats. Biol. Radioecol. 34:236-239.
  36. Lee, J., Kim, J., Moon, C., Kim, S.-H., Hyun, J. W., Park, J. W. & Shin, T. 2008. Radioprotective effects of fucoidan in mice treated with total body irradiation. Phytother. Res. 22:1677-1681. https://doi.org/10.1002/ptr.2562
  37. Lee, J.-H., Ko, J.-Y., Oh, J.-Y., Kim, E.-A., Kim, C.-Y. & Jeon, Y. -J. 2015a. Evaluation of phlorofucofuroeckol-A isolated from Ecklonia cava (Phaeophyta) on anti-lipid peroxidation in vitro and in vivo. Algae 30:313-323. https://doi.org/10.4490/algae.2015.30.4.313
  38. Lee, K. H., Bae, S. W., Cho, C.-H. & Rhee, K. H. 2009. Fucoidan protects human skin fibroblast cell line HS68 against ${\gamma}$-radiation-induced damage. Open Nat. Prod. J. 2:38-41. https://doi.org/10.2174/1874848100902010038
  39. Lee, S.-H., Kang, S.-M., Sok, C. H., Hong, J. T., Oh, J.-Y. & Jeon, Y.-J. 2015b. Cellular activities and docking studies of eckol isolated from Ecklonia cava (Laminariales, Phaeophyceae) as potential tyrosinase inhibitor. Algae 30:163-170. https://doi.org/10.4490/algae.2015.30.2.163
  40. Lee, W., Ahn, G., Lee, B.-J., Wijesinghe, W. A. J. P., Kim, D., Yang, H., Kim, Y. M., Park, S. J., Jee, Y. & Jeon, Y.-J. 2013. Radio-protective effect of polysaccharides isolated from Lactobacillus brevis-fermented Ecklonia cava. Int. J. Biol. Macromol. 52:260-266. https://doi.org/10.1016/j.ijbiomac.2012.10.004
  41. Li, Y.-X., Wijesekara, I., Li, Y. & Kim, S.-K. 2011. Phlorotannins as bioactive agents from brown algae. Process Biochem. 46:2219-2224. https://doi.org/10.1016/j.procbio.2011.09.015
  42. Lyons, N. M. & O'Brien, N. M. 2002. Modulatory effects of an algal extract containing astaxanthin on UVA-irradiated cells in culture. J. Dermatol. Sci. 30:73-84. https://doi.org/10.1016/S0923-1811(02)00063-4
  43. Mao, W., Li, Y., Wu, L., Wang, H., Zhang, Y., Zang, X. & Zhang, H. 2005. Chemical characterization and radioprotective effect of polysaccharide from Monostroma angicava (Chlorophyta). J. Appl. Phycol. 17:349-354. https://doi.org/10.1007/s10811-005-8360-8
  44. Markham, K. R. & Porter, L. J. 1969. Flavonoids in the green algae (chlorophyta). Phytochemistry 8:1777-1781. https://doi.org/10.1016/S0031-9422(00)85968-3
  45. Martone, P. T., Estevez, J. M., Lu, F., Ruel, K., Denny, M. W., Somerville, C. & Ralph, J. 2009. Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr. Biol. 19:169-175. https://doi.org/10.1016/j.cub.2008.12.031
  46. Matsumura, Y. & Ananthaswamy, H. N. 2004. Toxic effects of ultraviolet radiation on the skin. Toxicol. Appl. Pharmacol. 195:298-308. https://doi.org/10.1016/j.taap.2003.08.019
  47. Maurya, D. K., Devasagayam, T. P. & Nair, C. K. 2006. Some novel approaches for radioprotection and the beneficial effect of natural products. Indian J. Exp. Biol. 44:93-114.
  48. McCartney, M. & Rajendran, K. 1997. $^{99}TC$ in the Irish Sea. Recent trends. Radioprotection. Pt. 1. Inventories, behaviour and processes. In Germain, P., Guary, J. C., Guegueniat, P. & Metivier, H. (Eds.) Radionuclides in the oceans. Cherbourg-Octeville, p. 359-364.
  49. Mohamed, W. A., Ismail, S. A. & El-Hakim, Y. M. A. 2014. Spirulina platensis ameliorative effect against GSM 900-MHz cellular phone radiation-induced genotoxicity in male Sprague-Dawley rats. Comp. Clin. Path. 23:1719-1726. https://doi.org/10.1007/s00580-014-2003-x
  50. Moon, C., Kim, S.-H., Kim, J.-C., Hyun, J. W., Lee, N. H., Park, J. W. & Shin, T. 2008. Protective effect of phlorotannin components phloroglucinol and eckol on radiation-induced intestinal injury in mice. Phytother. Res. 22:238-242. https://doi.org/10.1002/ptr.2298
  51. Nagasawa, N., Mitomo, H., Yoshii, F. & Kume, T. 2000. Radiation-induced degradation of sodium alginate. Polym. Degrad. Stab. 69:279-285. https://doi.org/10.1016/S0141-3910(00)00070-7
  52. Nair, C. K., Parida, D. K. & Nomura, T. 2001. Radioprotectors in radiotherapy. J. Radiat. Res. 42:21-37. https://doi.org/10.1269/jrr.42.21
  53. Nesterenko, A. V., Nesterenko, V. B. & Yablokov, A. V. 2009. Chapter IV. Radiation protection after the Chernobyl catastrophe. Ann. N. Y. Acad. Sci. 1181:287-327. https://doi.org/10.1111/j.1749-6632.2009.04836.x
  54. Ngo, D.-H. & Kim, S.-K. 2013. Sulfated polysaccharides as bioactive agents from marine algae. Int. J. Biol. Macromol. 62:70-75. https://doi.org/10.1016/j.ijbiomac.2013.08.036
  55. Oh, H., Bing, S. J., Kim, A., Cho, J. & Jee, Y. 2013. Radio-protective effect of sulfated polysaccharide purified from Ecklonia cava against small intestinal stem cells of ${\gamma}$-ray irradiated mice. J. Biomed. Res. 14:220-225. https://doi.org/10.12729/jbr.2013.14.4.220
  56. Park, E., Ahn, G.-N., Lee, N. H., Kim, J. M., Yun, J. S., Hyun, J. W., Jeon, Y.-J., Wie, M. B., Lee, Y. J., Park, J. W. & Jee, Y. 2008. Radioprotective properties of eckol against ionizing radiation in mice. FEBS Lett. 582:925-930. https://doi.org/10.1016/j.febslet.2008.02.031
  57. Park, S.-J., Ahn, G., Lee, N. H., Park, J. W., Jeon, Y.-J. & Jee, Y. 2011. Phloroglucinol (PG) purified from Ecklonia cava attenuates radiation-induced apoptosis in blood lymphocytes and splenocytes. Food Chem. Toxicol. 49:2236-2242. https://doi.org/10.1016/j.fct.2011.06.021
  58. Pastina, B. & LaVerne, J. A. 2001. Effect of molecular hydrogen on hydrogen peroxide in water radiolysis. J. Phys. Chem. A 105:9316-9322.
  59. Persaud, R., Zhou, H., Baker, S. E., Hei, T. K. & Hall, E. J. 2005. Assessment of low linear energy transfer radiation-induced bystander mutagenesis in a three-dimensional culture model. Cancer Res. 65:9876-9882. https://doi.org/10.1158/0008-5472.CAN-04-2875
  60. Piao, M. J., Hyun, Y. J., Cho, S. J., Kang, H. K., Yoo, E. S., Koh, Y. S., Lee, N. H., Ko, M. H. & Hyun, J. W. 2012. An ethanol extract derived from Bonnemaisonia hamifera scavenges ultraviolet B (UVB) radiation-induced reactive oxygen species and attenuates UVB-induced cell damage in human keratinocytes. Mar. Drugs 10:2826-2845. https://doi.org/10.3390/md10122826
  61. Prasad, K. N. 1995. Handbook of radiobiology. CRC Press, Boca Raton, FL, 352 pp.
  62. Qiong, L., Jun, L., Jun, Y., Yinzhu, Z., Xiaoyan, C. & Mingliang, Y. 2011. The effect of Laminaria japonica polysaccharides on the recovery of the male rat reproductive system and mating function damaged by multiple minidoses of ionizing radiations. Environ. Toxicol. Pharmacol. 31:286-294. https://doi.org/10.1016/j.etap.2010.11.006
  63. Qishen, P., Guo, B. J. & Kolman, A. 1989. Radioprotective effect of extract from Spirulina platensis in mouse bone marrow cells studied by using the micronucleus test. Toxicol. Lett. 48:165-169. https://doi.org/10.1016/0378-4274(89)90171-9
  64. Quigley, M. S., Santschi, P. H., Hung, C.-C., Guo, L. & Honeyman, B. D. 2002. Importance of acid polysaccharides for $^{234}Th$234Th complexation to marine organic matter. Limnol. Oceanogr. 47:367-377. https://doi.org/10.4319/lo.2002.47.2.0367
  65. Rhee, K. H. & Lee, K. H. 2011. Protective effects of fucoidan against ${\gamma}$-radiation-induced damage of blood cells. Arch. Pharm. Res. 34:645-651. https://doi.org/10.1007/s12272-011-0415-6
  66. Riley, P. A. 1994. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int. J. Radiat. Biol. 65:27-33. https://doi.org/10.1080/09553009414550041
  67. Salgado, L. T., Tomazetto, R., Cinelli, L. P., Farina, M. & Amado Filho, G. M. 2007. The influence of brown algae alginates on phenolic compounds capability of ultraviolet radiation absorption in vitro. Braz. J. Oceanogr. 55:145-154. https://doi.org/10.1590/S1679-87592007000200007
  68. Shi, J., Cheng, C., Zhao, H., Jing, J., Gong, N. & Lu, W. 2013. In vivo anti-radiation activities of the Ulva pertusa polysaccharides and polysaccharide-iron (III) complex. Int. J. Biol. Macromol. 60:341-346. https://doi.org/10.1016/j.ijbiomac.2013.06.001
  69. Shin, T., Ahn, M., Hyun, J. W., Kim, S. H. & Moon, C. 2014. Antioxidant marine algae phlorotannins and radioprotection: a review of experimental evidence. Acta Histochem. 116:669-674. https://doi.org/10.1016/j.acthis.2014.03.008
  70. Shin, T., Kim, H., Kim, J., Ahn, M., Moon, C., Hyun, J. W., Jee, Y., Lee, N. H. & Park, J. W. 2010. A comparative study of radioprotection with Callophyllis japonica extract and amifostine against lethal whole body gamma irradiation in mice. Orient. Pharm. Exp. Med. 10:1-6. https://doi.org/10.3742/OPEM.2010.10.1.001
  71. Singh, S. P., Tiku, A. B. & Kesavan, P. C. 1995. Post-exposure radioprotection by Chlorella vulgaris (E-25) in mice. Indian J. Exp. Biol. 33:612-615.
  72. Stein, J. R., Hellebust, J. A. & Craigie, J. S. 1973. Handbook of phycological methods: physiological and biochemical methods. Cambridge University Press, NY, 460 pp.
  73. Tawfik, S. S. & Salama, S. F. 2011. Preventive efficacy of fucoidan in rats exposed to ${\gamma}$-rays. J. Rad. Res. Appl. Sci. 4:233-244.
  74. United Nations Scientific Committee on the Effects of Atomic Radiation. 2000. Sources and effects of ionizing radiation. Vol. 1. Sources. United Nations, NY, 654 pp.
  75. Usov, A. I. & Zelinsky, N. D. 2013. Chemical structures of algal polysaccharides. In Dominguez, H. (Ed.) Functional Ingredients from Algae for Foods and Nutraceuticals. Woodhead Publishing, Cambridge, pp. 23-86.
  76. Varanda, E. A. & Tavares, D. C. 1998. Radioprotection: mechanisms and radioprotective agents including honeybee venom. J. Venom. Anim. Toxins 4:5-21. https://doi.org/10.1590/S0104-79301998000100002
  77. Venkatachalam, S. R. & Chattopadhyay, S. 2005. Natural radioprotective agents: an overview. Curr. Org. Chem. 9:389-404. https://doi.org/10.2174/1385272053174930
  78. Wijesinghe, W. A. & Jeon, Y. J. 2012. Exploiting biological activities of brown seaweed Ecklonia cava for potential industrial applications: a review. Int. J. Food Sci. Nutr. 63:225-235. https://doi.org/10.3109/09637486.2011.619965
  79. Woodside, G. & Kocurek, D. 1997. Environmental, safety, and health engineering. John Wiley & Sons, NY, 600 pp.
  80. Yoo, B.-S., Lee, K.-J. & Lee, S.-R. 1982. The uptake and loss of strontium-90 by the seaweed Undaria pinnatifida. J. Korean Nucl. Soc. 14:116-121.
  81. Zhang, H. Q., Lin, A. P., Sun, Y. & Deng, Y. M. 2001. Chemoand radio-protective effects of polysaccharide of Spirulina platensis on hemopoietic system of mice and dogs. Acta Pharmacol. Sin. 22:1121-1124.

Cited by

  1. Inhibition of inflammatory responses elicited by urban fine dust particles in keratinocytes and macrophages by diphlorethohydroxycarmalol isolated from a brown alga Ishige okamurae vol.32, pp.3, 2017, https://doi.org/10.4490/algae.2017.32.8.14
  2. A fucoidan fraction purified from Chnoospora minima ; a potential inhibitor of LPS-induced inflammatory responses vol.104, 2017, https://doi.org/10.1016/j.ijbiomac.2017.07.031
  3. against HL-60 and MCF-7 cancer cells vol.38, pp.4, 2017, https://doi.org/10.1002/jat.3559
  4. Protective effect of gallic acid derivatives from the freshwater green alga Spirogyra sp. against ultraviolet B-induced apoptosis through reactive oxygen species clearance in human keratinocytes and zebrafish vol.32, pp.4, 2017, https://doi.org/10.4490/algae.2017.32.11.29
  5. Cryptic species diversity of ochtodenes-producing Portieria species (Gigartinales, Rhodophyta) from the northwest Pacific vol.33, pp.3, 2018, https://doi.org/10.4490/algae.2018.33.7.30
  6. Protective Effect of Sulfated Polysaccharides from Celluclast-Assisted Extract of Hizikia fusiforme Against Ultraviolet B-Induced Skin Damage by Regulating NF-κB, AP-1, and MAPKs Signaling Pathways In Vitro in Human Dermal Fibroblasts vol.16, pp.7, 2018, https://doi.org/10.3390/md16070239
  7. A mixture of seaweed extracts and glycosaminoglycans from sea squirts inhibits α-MSH-induced melanogenesis in B16F10 melanoma cells vol.22, pp.5, 2016, https://doi.org/10.1186/s41240-019-0126-3
  8. Aloe veramodulates X-ray induced hematological and splenic tissue damage in mice vol.38, pp.10, 2016, https://doi.org/10.1177/0960327119860174
  9. Improvement of ionizing gamma irradiation tolerance of Chlorella vulgaris by pretreatment with polyethylene glycol vol.96, pp.7, 2020, https://doi.org/10.1080/09553002.2020.1741717
  10. SD rats의 성별에 따른 형개 열수추출물의 방사선 방호효과 vol.15, pp.3, 2021, https://doi.org/10.7742/jksr.2021.15.3.313
  11. Dieckol: a brown algal phlorotannin with biological potential vol.142, pp.None, 2016, https://doi.org/10.1016/j.biopha.2021.111988