DOI QR코드

DOI QR Code

Growth responses of Chondrus ocellatus Holmes (Gigartinales, Rhodophyta) to two endophytes, Mikrosyphar zosterae Kuckuck (Ectocarpales, Ochrophyta) and Ulvella ramosa (N. L. Gardner) R. Nielsen (Ulvales, Chlorophyta) in culture

  • Ogandaga, Cyr Abel Maranguy (Faculty of Biological Science and Institute for Environmental Science, Wonkwang University) ;
  • Choi, Han Gil (Faculty of Biological Science and Institute for Environmental Science, Wonkwang University) ;
  • Kim, Jang Kyun (Department of Marine Science, Incheon National University) ;
  • Nam, Ki Wan (Department of Marine Biology, Pukyong National University)
  • Received : 2016.10.09
  • Accepted : 2016.12.09
  • Published : 2016.12.15

Abstract

To examine the effects of two endophytic algae, Mikrosyphar zosterae (brown alga) and Ulvella ramosa (green alga), on the host Chondrus ocellatus (red alga), culture experiments were conducted. Four treatments were made: endophyte-free (Chondrus only), endophyte-M (Chondrus + Mikrosyphar), endophyte-U (Chondrus + Ulvella), and endophytes-M U (Chondrus + Mikrosyphar + Ulvella). After 3 weeks, the relative growth rates (RGRs) of frond lengths and the number of newly formed bladelets were examined. M. zosterae formed wart-like dots on C. ocellatus fronds, whereas U. ramosa made dark spots. The RGRs of frond lengths of C. ocellatus were significantly greater in the endophyte-free and endophyte-M treatment groups than in the endophyte-U and endophytes-M U treatment groups, indicating that the growth of host C. ocellatus was inhibited more by the green endophyte U. ramosa than the brown endophyte M. zosterae. The number of newly produced bladelets was greater in the endophyte-U and endophytes-M U groups than in the endophyte-free and endophyte-M treatment groups. These results indicate that the two endophytes inhibit growth of the host C. ocellatus. The negative effects of U. ramosa on C. ocellatus growth were more severe than those caused by M. zosterae. Furthermore, U. ramosa destroyed the apical meristems of C. ocellatus, whereas M. zosterae did not. On the other hand, C. ocellatus showed compensatory growth in the form of lateral branch production as U. ramosa attacked its apical meristems.

Keywords

References

  1. Apt, K. E. 1988. Galls and tumor-like growths on marine macroalgae. Dis. Aquat. Org. 4:211-217. https://doi.org/10.3354/dao004211
  2. Apt, K. E. & Gibor, A. 1991. The ultrastructure of galls on the red alga Gracilaria epihippisora. J. Phycol. 27:409-413. https://doi.org/10.1111/j.0022-3646.1991.00409.x
  3. Bouarab, K., Potin, P., Weinberger, F., Correa, J. & Kloareg, B. 2001. The Chondrus crispus-Acrochaete operculata hostpathogen association, a novel model in glycobiology and applied phycopathology. J. Appl. Phycol. 13:185-193. https://doi.org/10.1023/A:1011164031386
  4. Brodie, J., Guiry, M. D. & Masuda, M. 1991. Life history and morphology of Chondrus nipponicus (Gigartinales, Rhodophyta) from Japan. Br. Phycol. J. 26:33-50. https://doi.org/10.1080/00071619100650041
  5. Brodie, J., Guiry, M. D. & Masuda, M. 1993. Life history, morphology and crossability of Chondrus ocellatus forma ocellatus and C. ocellatus forma crispoides (Gigartinales, Rhodophyta) from the north-western Pacific. Eur. J. Phycol. 28:183-196. https://doi.org/10.1080/09670269300650281
  6. Choi, H. G., Kim, B. Y., Park, S. K., Heo, J. S., Kim, C., Kim, Y. S. & Nam, K. W. 2015a. Effects of wave action and grazers on frond perforation of the green alga, Ulva australis. Algae 30:59-66. https://doi.org/10.4490/algae.2015.30.1.059
  7. Choi, H. G., Kim, C., Kim, Y. S., Lee, S, J., Park, M. A. & Nam, K. W. 2015b. Phenology of host Chondrus ocellatus with filamentous green endophyte infection. Ocean Sci. J. 50:519-527. https://doi.org/10.1007/s12601-015-0047-8
  8. Chopin, T. & Floc'h, J.-Y. 1992. Eco-physiological and biochemical study of two of the most contrasting forms of Chondrus crispus (Rhodophyta, Gigartinales). Mar. Ecol. Prog. Ser. 81:185-195. https://doi.org/10.3354/meps081185
  9. Corey, P., Kim, J. K., Garbary, D. J., Prithiviraj, B. & Duston, J. 2012. Bioremediation potential of Chondrus crispus (Basin Head) and Palmaria palmata: effect of temperature and high nitrate on nutrient removal. J. Appl. Phycol. 24:441-448. https://doi.org/10.1007/s10811-011-9734-8
  10. Correa, J. A., Buschmann, A., Retamales, C. & Beltran, J. 1997. Infectious diseases of Mazzaella laminarioides (Rhodophyta): changes in infection prevalence and disease expression associated with season, locality, and withinsite location. J. Phycol. 33:344-352. https://doi.org/10.1111/j.0022-3646.1997.00344.x
  11. Correa, J. A., Flores, V. & Garrido, J. 1994. Green patch disease in Iridaea laminarioides (Rhodophyta) caused by Endophyton sp. (Chlorophyta). Dis. Aquat. Org. 19:203-213. https://doi.org/10.3354/dao019203
  12. Correa, J. A., Flores, V. & Sanchez, P. 1993. Deformative disease in Iridaea laminarioides (Rhodophyta): gall development associated with an endophytic cyanobacterium. J. Phycol. 29:853-860. https://doi.org/10.1111/j.0022-3646.1993.00853.x
  13. Correa, J. A. & McLachlan, J. L. 1991. Endophytic algae of Chondrus crispus (Rhodophyta). III. Host-specificity. J. Phycol. 27:448-459. https://doi.org/10.1111/j.0022-3646.1991.00448.x
  14. Correa, J. A. & McLachlan, J. L. 1992. Endophytic algae of Chondrus crispus (Rhodophyta). IV. Effects on the host following infections by Acrochaete operculata and A. heteroclada (Chlorophyta). Mar. Ecol. Prog. Ser. 81:73-87. https://doi.org/10.3354/meps081073
  15. Correa, J. A. & McLachlan, J. L. 1994. Endophytic algae of Chondrus crispus (Rhodophyta). V. Fine structure of the infection by Acrochaete operculata (Chlorophyta). Eur. J. Phycol. 29:33-47. https://doi.org/10.1080/09670269400650461
  16. Correa, J. A., Nielsen, R. & Grund, D. W. 1988. Endophytic algae of Chondrus crispus (Rhodophyta) II. Acrochaete heteroclada sp. nov., A. operculata sp. nov., and Phaeophila dendroides (Chlorophyta). J. Phycol. 24:528-539.
  17. Faugeron, S., Martinez, E. A., Sanchez, P. A. & Correa, J. A. 2000. Infectious diseases in Mazzaella laminarioides (Rhodophyta): estimating the effect of infections on host reproductive potential. Dis. Aquat. Org. 42:143-148. https://doi.org/10.3354/dao042143
  18. Fernandes, D. R. P., Yokoya, N. S. & Yoneshigue-Valentin, Y. 2011. Protocol for seaweed decontamination to isolate unialgal cultures. Rev. Bras. Farmacogn. 21:313-316. https://doi.org/10.1590/S0102-695X2011005000063
  19. Gachon, C. M. M., Sime-Ngando, T., Strittmatter, M., Chambouvet, A. & Kim, G. H. 2010. Algal diseases: spotlight on a black box. Trends Plant Sci. 15:633-640. https://doi.org/10.1016/j.tplants.2010.08.005
  20. Garbary, D. J., Miller, A. G. & Scrosati, R. A. 2014. Ascophyllum nodosum and its symbionts: XI. The epiphyte Vertebrata lanosa performs better photosynthetically when attached to Ascophyllum than when alone. Algae 29:321-331. https://doi.org/10.4490/algae.2014.29.4.321
  21. Gauna, M. C., Parodi, E. R. & Caceres, E. J. 2009. Epi-endophytic symbiosis between Laminariocolax aecidioides (Ectocarpales, Phaeophyceae) and Undaria pinnatifida (Laminariales, Phaeophyceae) growing on Argentinian coasts. J. Appl. Phycol. 21:11-18. https://doi.org/10.1007/s10811-007-9298-9
  22. Goecke, F., Wiese, J., Nunez, A., Labes, A., Imhoff, J. F. & Neuhauser, S. 2012. A novel phytomyxean parasite associated with galls on the bull-kelp Durvillaea antarctica (Chamisso) Hariot. PLoS One 7:e45358. https://doi.org/10.1371/journal.pone.0045358
  23. Honkanen, T. & Jormalainen, V. 2002. Within-alga integration and compensation: effects of simulated herbivory on growth and reproduction of the brown alga, Fucus vesiculosus. Int. J. Plant Sci. 163:815-823. https://doi.org/10.1086/342081
  24. Iima, M. & Tatewaki, M. 1987. On the life history and host specificity of Blastophysa rhizopus (Codiales, Chaetosiphonaceae), an endophytic green alga from Mororan in laboratory cultures. Jpn. J. Phycol. 35:241-250.
  25. Kim, C., Kim, Y. S., Choi, H. G. & Nam, K. W. 2014. New records of three endophytic green algae from Grateloupia spp. (Rhodophyta) in Korea. Algae 29:127-136. https://doi.org/10.4490/algae.2014.29.2.127
  26. Kim, Y. S., Choi, H. G. & Nam, K. W. 2006. Phenology of Chondrus ocellatus in Cheongsapo near Busan, Korea. J. Appl. Phycol. 18:551-556. https://doi.org/10.1007/s10811-006-9070-6
  27. Lee, S. J., Park, M.-A., Ogandaga-Maranguy, C. A., Park, S. K., Kim, H., Kim, Y. S. & Choi, H. G. 2013. A study on the growth and disease of Chondrus ocellatus in Korea. J. Fish Pathol. 26:265-274. https://doi.org/10.7847/jfp.2013.26.3.265
  28. Li, X., Zhao, P., Wang, G., Li, D., Wang, J. & Duan, D. 2010. Effects of temperature and irradiance on early development of Chondrus ocellatus Holm (Gigartinaceae, Rhodophyta). Chin. J. Oceanol. Limnol. 28:508-513. https://doi.org/10.1007/s00343-010-9043-0
  29. Lindstrom, S. C. 2009. The biogeography of seaweeds in southeast Alaska. J. Biogeogr. 36:401-409. https://doi.org/10.1111/j.1365-2699.2007.01855.x
  30. Necas, J. & Bartosikova, L. 2013. Carrageenan: a review. Vet. Med. Czech. 58:187-205. https://doi.org/10.17221/6758-VETMED
  31. Potin, P. 2012. Intimate Associations between epiphytes, endophytes, and parasites of seaweeds. In Wiencke, C. & Bischof, K. (Eds.) Seaweed Biology: Novel Insights into Ecophysiology, Ecology and Utilization. Springer, NY, pp. 203-234.
  32. Preuss, M. & Zuccarello, G. C. 2014. What's in a name? Monophyly of genera in the red algae: Rhodophyllis parasitica sp. nov. (Gigartinales, Rhodophyta); a new red algal parasite from New Zealand. Algae 29:279-288. https://doi.org/10.4490/algae.2014.29.4.279
  33. Provasoli, L. 1968. Media and prospects for the cultivation of marine algae. In Watanabe, A. & Hattori, A. (Eds.) Cultures and Collections of Algae. Proc. U. S. Jpn. Conf. 1966, Japanese Society for Plant Physiology, Hakone, pp. 63-75.
  34. Sanchez, P. C., Correa, J. A. & Garcia-Reina, G. 1996. Hostspecificity of Endophyton ramosum (Chlorophyta), the causative agent of green patch disease in Mazzaella laminarioides (Rhodophyta). Eur. J. Phycol. 31:173-179. https://doi.org/10.1080/09670269600651351
  35. Schoenrock, K. M., Amsler, C. D., McClintock, J. B. & Baker, B. J. 2013. Endophyte presence as a potential stressor on growth and survival in Antarctic macroalgal hosts. Phycologia 52:595-599. https://doi.org/10.2216/13-188.1
  36. Sokal, R. R. & Rohlf, F. J. 1995. Biometry: the principles and practices of statistics in biological research. 3rd ed. W. H. Freeman, NY, 887 pp.
  37. Yoshida, T. & Akiyama, K. 1979. Streblonema (Phaeophyceae) infection in the frond of cultivated Undaria (Phaeophyceae). In Proc. 9th Int. Seaweed Symp., Science Press, Santa Barbara, CA, pp. 219-223.
  38. Wang, A., Wang, J. & Duan, D. 2006. Early development of Chondrus ocellatus Holm (Gigartinaceae, Rhodophyta). Chin. J. Oceanol. Limnol. 24:129-133. https://doi.org/10.1007/BF02842811
  39. Weinberger, F. 2007. Pathogen-induced defense and innate immunity in macroalgae. Biol. Bull. 213:290-302. https://doi.org/10.2307/25066646
  40. West, J. A., Pueschel, C. M., Klochkova, T. A., Kim, G. H., de Goer, S. & Zuccarello, G. C. 2013. Gall structure and specificity in Bostrychia culture isolated (Rhodomelaceae, Rhodophyta). Algae 28:83-92. https://doi.org/10.4490/algae.2013.28.1.083
  41. Zhou, G., Ma, W. & Yuan, P. 2014. Chemical characterization and antioxidant activities of different sulfate content of $\lambda$-carrageenan fractions from edible red seaweed Chondrus ocellatus. Cell. Mol. Biol. 60:107.

Cited by

  1. New Records of Two unknown Micro-filamentous Endophytic Green Algae in Korea: Phaeophila dendroides and Dilabifilum arthropyreniae vol.29, pp.1, 2017, https://doi.org/10.13000/JFMSE.2017.29.1.234
  2. Growth, reproduction and recruitment of Silvetia siliquosa (Fucales, Phaeophyceae) transplants using polyethylene rope and natural rock methods vol.32, pp.4, 2017, https://doi.org/10.4490/algae.2017.32.12.6
  3. Algal endophytes of commercial Chondrus ocellatus (Gigartinaceae, Rhodophyta) from different wild populations in Korea vol.32, pp.1, 2020, https://doi.org/10.1007/s10811-019-01987-3
  4. Molecular identification, growth, and reproduction of Colaconema daviesii (Rhodophyta; Colaconematales) endophyte of the edible red seaweed Chondracanthus chamissoi vol.32, pp.5, 2016, https://doi.org/10.1007/s10811-020-02176-3