DOI QR코드

DOI QR Code

Evolutionary history of the monospecific Compsopogon genus (Compsopogonales, Rhodophyta)

  • Nan, Fangru (School of Life Science, Shanxi University) ;
  • Feng, Jia (School of Life Science, Shanxi University) ;
  • Lv, Junping (School of Life Science, Shanxi University) ;
  • Liu, Qi (School of Life Science, Shanxi University) ;
  • Xie, Shulian (School of Life Science, Shanxi University)
  • Received : 2016.06.30
  • Accepted : 2016.10.22
  • Published : 2016.12.15

Abstract

Compsopogon specimens collected in China were examined based on morphology and DNA sequences. Five molecular markers from different genome compartments including rbcL, COI, 18S rDNA, psbA, and UPA were identified and used to construct a phylogenetic relationship. Phylogenetic analyses indicated that two different morphological types from China clustered into an independent clade with Compsopogon specimens when compared to other global samples. The Compsopogon clade exhibited robust support values, revealing the affiliation of the samples to Compsopogon caeruleus. Although the samples were distributed in a close geographical area, unexpected sequence divergences between the Chinese samples implied that they were introduced by different dispersal events and from varied origins. It was speculated that Compsopogon originated in North America, a portion of the Laurentia landmass situated in the Rodinia supercontinent at approximately 573.89-1,701.50 million years ago during the Proterozoic era.Although Compsopogonhad evolved for a rather long time, genetic conservation had limited its variability and rate of evolution, resulting in the current monospecific global distribution. Additional global specimens and sequence information were required to increase our understanding of the evolutionary history of this ancient red algal lineage.

Keywords

References

  1. Benton, M. J. & Twitchett, R. J. 2003. How to kill (almost) all life: the end-Permian extinction event. Trends Ecol. Evol. 18:358-365. https://doi.org/10.1016/S0169-5347(03)00093-4
  2. Butterfield, N. J. 2001. Paleobiology of the late Mesoproterozoic (ca. 1200 Ma) hunting formation, Somerset Island, Arctic Canada. Precambrian Res. 111:235-256. https://doi.org/10.1016/S0301-9268(01)00162-0
  3. Codes, G. 2000. Sequencher: version 4.1. 2. Gene Codes Corporation, Ann Arbor, MI.
  4. Deng, J.-B., Drew, B. T., Mavrodiev, E. V., Gitzendanner, M. A., Soltis, P. S. & Soltis, D. E. 2015. Phylogeny, divergence times, and historical biogeography of the angiosperm family Saxifragaceae. Mol. Phylogenet. Evol. 83:86-98. https://doi.org/10.1016/j.ympev.2014.11.011
  5. Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. 2006. Relaxed phylogenetics and dating with confidence. PLoS Biol. 4:e88. https://doi.org/10.1371/journal.pbio.0040088
  6. Drummond, A. J. & Rambaut, A. 2007. BEAST: bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7:214. https://doi.org/10.1186/1471-2148-7-214
  7. Entwisle, T. J., Vis, M. L., Chiasson, W. B., Necchi, O. Jr. & Sherwood, A. R. 2009. Systematics of the Batrachospermales (Rhodophyta): a synthesis. J. Phycol. 45:704-715. https://doi.org/10.1111/j.1529-8817.2009.00686.x
  8. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17:368-376. https://doi.org/10.1007/BF01734359
  9. Freshwater, D. W., Fredericq, S., Butler, B. S., Hommersand, M. H. & Chase, M. W. 1994. A gene phylogeny of the red algae (Rhodophyta) based on plastid rbcL. Proc. Natl. Acad. Sci. U. S. A. 91:7281-7285. https://doi.org/10.1073/pnas.91.15.7281
  10. Freshwater, D. W. & Rueness, J. 1994. Phylogenetic relationships of some European Gelidium (Gelidiales, Rhodophyta) species based on rbcL nucleotide sequence analysis. Phycologia 33:187-194. https://doi.org/10.2216/i0031-8884-33-3-187.1
  11. Guindon, S. & Gascuel, O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52:696-704. https://doi.org/10.1080/10635150390235520
  12. House, D. L., Vandenbroek, A. M. & Vis, M. L. 2010. Intraspecific genetic variation of Batrachospermum gelatinosum (Batrachospermales, Rhodophyta) in eastern North America. Phycologia 49:501-507. https://doi.org/10.2216/09-104.1
  13. Huson, D. H. & Bryant, D. 2006. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23:254-267. https://doi.org/10.1093/molbev/msj030
  14. Krishnamurthy, V. 1962. The morphology and taxonomy of the genus Compsopogon Montagne. J. Linn. Soc. Lond. Bot. 58:207-222. https://doi.org/10.1111/j.1095-8339.1962.tb00894.x
  15. Kumano, S. 2002. Freshwater red algae of the world. Biopress Ltd., Bristol, 375 pp.
  16. Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., De Waele, B., Ernst, R. E., Fitzsimons, I. C. W., Fuck, R. A., Gladkochub, D. P., Jacobs, J., Karlstrom, K. E., Lu, S., Natapov, L. M., Pease, V., Pisarevsky, S. A., Thrane, K. & Vernikovsky, V. 2008. Assembly, configuration, and break-up history of Rodinia: a synthesis. Precambrian Res. 160:179-210. https://doi.org/10.1016/j.precamres.2007.04.021
  17. Muller, K. M., Oliveira, M. C., Sheath, R. G. & Bhattacharya, D. 2001. Ribosomal DNA phylogeny of the Bangiophycidae (Rhodophyta) and the origin of secondary plastids. Am. J. Bot. 88:1390-1400. https://doi.org/10.2307/3558445
  18. Necchi, O. Jr., Branco, C. C. Z. & Gomes, R. R. V. 1999. Microhabitat and plant structure of Compsopogon coeruleus (Compsopogonaceae, Rhodophyta) populations in streams from Sao Paulo State, southeastern Brazil. Cryptogam. Algol. 20:75-87. https://doi.org/10.1016/S0181-1568(99)80008-7
  19. Necchi, O. Jr., Fo, A. S. G., Salomaki, E. D., West, J. A., Aboal, M. & Vis, M. L. 2013. Global sampling reveals low genetic diversity within Compsopogon (Compsopogonales, Rhodophyta). Eur. J. Phycol. 48:152-162. https://doi.org/10.1080/09670262.2013.783626
  20. Necchi, O. Jr. & Ribeiro, D. M. 1992. The family Compsopogonaceae (Rhodophyta) in Brazil. Archiv. Hydrobiol. 94:105-118.
  21. Pareek, M., Mishra, A. & Jha, B. 2010. Molecular phylogeny of Gracilaria species inferred from molecular markers belonging to three different genomes. J. Phycol. 46:1322-1328. https://doi.org/10.1111/j.1529-8817.2010.00903.x
  22. Park, R. G. 1992. Plate kinematic history of Baltica during the Middle to Late Proterozoic: a model. Geology 20:725-728. https://doi.org/10.1130/0091-7613(1992)020<0725:PKHOBD>2.3.CO;2
  23. Pearson, P. N., Ditchfield, P. W., Singano, J., Harcourt-Brown, K. G., Nicholas, C. J., Olsson, R. K., Shackleton, N. J. & Hall, M. A. 2001. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature 413:481-487. https://doi.org/10.1038/35097000
  24. Posada, D. & Buckley, T. R. 2004. Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53:793-808. https://doi.org/10.1080/10635150490522304
  25. Ragan, M. A., Bird, C. J., Rice, E. L., Cutell, R. R., Murphy, C. A. & Singh, R. K. 1994. A molecular phylogeny of the marine red algae (Rhodophyta) based on the nuclear small-subunit rRNA gene. Proc. Natl. Acad. Sci. U. S. A. 91:7276-7280. https://doi.org/10.1073/pnas.91.15.7276
  26. Rambaut, A., Suchard, M. A., Xie, D. & Drummond, A. J. 2014. Tracer v1. 6. Computer program and documentation distributed by the author. Available from: http://beast.bio.ed.ac.uk/Tracer. Accessed Jan 15, 2015.
  27. Rintoul, T. L., Sheath, R. G. & Vis, M. L. 1999. Systematics and biogeography of the Compsopogonales (Rhodophyta) with emphasis on the freshwater families in North America. Phycologia 38:517-527. https://doi.org/10.2216/i0031-8884-38-6-517.1
  28. Ronquist, F. & Huelsenbeck, J. P. 2003. MrBayes 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574.
  29. Rueness, J. 2010. DNA barcoding of select freshwater and marine red algae (Rhodophyta). Cryptogam. Algol. 31:377-386.
  30. Salomaki, E. D., Kwandrans, J., Eloranta, P. & Vis, M. L. 2014. Molecular and morphological evidence for Sheathia gen. nov. (Batrachospermales, Rhodophyta) and three new species. J. Phycol. 50:526-542. https://doi.org/10.1111/jpy.12179
  31. Saunders, G. W. 1993. Gel purification of red algal genomic DNA: an inexpensive and rapid method for the isolation of polymerase chain reaction-friendly DNA. J. Phycol. 29:251-254. https://doi.org/10.1111/j.0022-3646.1993.00251.x
  32. Schulte, P., Alegret, L., Arenillas, I., Arz, J. A., Barton, P. J., Bown, P. R., Bralower, T. J., Christeson, G. L., Claeys, P., Cockell, C. S., Collins, G. S., Deutsch, A., Goldin, T. J., Goto, K., Grajales-Nishimura, J. M., Grieve, R. A. F., Gulick, S. P. S., Johnson, K. R., Kiessling, W., Koeberl, C., Kring, D. A., MacLeod, K. G., Matsui, T., Melosh, J., Montanari, A., Morgan, J. V., Neal, C. R., Nichols, D. J., Norris, R. D., Pierazzo, E., Ravizza, G., Rebolledo-Vieyra, M., Reimold, W. U., Robin, E., Salge, T., Speijer, R. P., Sweet, A. R., Urrutia-Fucugauchi, J., Vajda, V., Whalen, M. T. & Willumsen, P. S. 2010. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327:1214-1218. https://doi.org/10.1126/science.1177265
  33. Seto, R. 1987. Study of a freshwater red alga, Compsopogonopsis fruticosa (Jao) Seto comb. nov. (Compsopogonales, Rhodophyta) from China. Jpn. J. Phycol. 35:265-267.
  34. Sheath, R. G. & Hambrook, J. A. 1990. Freshwater ecology. In Cole, K. M. & Sheath, R. G. (Eds.) Biology of the Red Algae. Cambridge University Press, Cambridge, pp. 423-453.
  35. Shi, Z. 2006. Flora algarum sinicarum aquae dulcis, Tomus XIII, Rhodophyta, Phaeophyta. Beijing Science Press, Beijing, 208 pp.
  36. Shyam, R. & Sarma, Y. S. R. K. 1980. Cultural observations on the morphology, reproduction and cytology of a freshwater red alga Compsopogon Mont from India. Nova Hedwigia 32:745-767.
  37. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731-2739. https://doi.org/10.1093/molbev/msr121
  38. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. 1997. The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25:4876-4882. https://doi.org/10.1093/nar/25.24.4876
  39. Vis, M. L., Feng, J., Chiasson, W. B., Xie, S.-L., Stancheva, R., Entwisle, T. J., Chou, J.-Y. & Wang, W.-L. 2010. Investigation of the molecular and morphological variability in Batrachospermum arcuatum (Batrachospermales, Rhodophyta) from geographically distant locations. Phycologia 49:545-553. https://doi.org/10.2216/10-04.1
  40. Vis, M. L., Harper, J. T. & Saunders, G. W. 2007. Large subunit rDNA and rbcL gene sequence data place Petrohua bernabei gen. et sp. nov. in the Batrachospermales (Rhodophyta), but do not provide further resolution among taxa in this order. Phycol. Res. 55:103-112. https://doi.org/10.1111/j.1440-1835.2007.00453.x
  41. Vis, M. L., Necchi, O. Jr., Chiasson, W. B. & Entwisle, T. J. 2012. Molecular phylogeny of the genus Kumanoa (Batrachospermales, Rhodophyta). J. Phycol. 48:750-758. https://doi.org/10.1111/j.1529-8817.2012.01141.x
  42. Vis, M. L. & Sheath, R. G. 1997. Biogeography of Batrachospermum gelatinosum (Batrachospermales, Rhodophyta) in North America based on molecular and morphological data. J. Phycol. 33:520-526. https://doi.org/10.1111/j.0022-3646.1997.00520.x
  43. Vis, M. L., Sheath, R. G. & Cole, K. M. 1992. Systematics of the freshwater red algal family Compsopogonaceae in North America. Phycologia 31:564-575. https://doi.org/10.2216/i0031-8884-31-6-564.1
  44. Xiao, S., Zhang, Y. & Knoll, A. H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 391:553-558. https://doi.org/10.1038/35318
  45. Xie, L., Wagner, W. L., Ree, R. H., Berry, P. E. & Wen, J. 2009. Molecular phylogeny, divergence time estimates, and historical biogeography of Circaea (Onagraceae) in the Northern Hemisphere. Mol. Phylogenet. Evol. 53:995-1009. https://doi.org/10.1016/j.ympev.2009.09.009
  46. Xie, S. L. & Ling, Y. J. 2003. A taxonomic study of freshwater red algae from Shanxi Province, North China. Acta Bot. Boreali-Occidential Sin. 24:1489-1492.
  47. Yang, E. C., Boo, S. M., Bhattacharya, D., Saunders, G. W., Knoll, A. H., Fredericq, S., Graf, L. & Yoon, H. S. 2016. Divergence time estimates and the evolution of major lineages in the florideophyte red algae. Sci. Rep. 6:21361. https://doi.org/10.1038/srep21361
  48. Yoon, H. S., Hackett, J. D., Ciniglia, C., Pinto, G. & Bhattacharya, D. 2004. A molecular timeline for the origin of photosynthetic eukaryotes. Mol. Biol. Evol. 21:809-818. https://doi.org/10.1093/molbev/msh075
  49. Yu, Y., Harris, A. J. & He, X. 2010. S-DIVA (Statistical Dispersal-Vicariance Analysis): a tool for inferring biogeographic histories. Mol. Phylogenet. Evol. 56:848-850. https://doi.org/10.1016/j.ympev.2010.04.011
  50. Yu, Y., Harris, A. & He, X. 2011. RASP (reconstruct ancestral state in phylogenies) 2.0 beta. Available from: http://mnh.scu.edu.cn/soft/blog/RASP. Accessed Jun 13, 2011.