DOI QR코드

DOI QR Code

벼 재배 시 경운 및 재배방법에 의한 메탄발생 양상

Changes in Methane Emissions from Paddy under Different Tillage and Cultivation Methods

  • 김숙진 (재배환경과, 국립식량과학원) ;
  • 조현숙 (작물재배생리과, 국립식량과학원) ;
  • 최종서 (재배환경과, 국립식량과학원) ;
  • 박기도 (기초기반과, 국립식량과학원) ;
  • 장정숙 (재배환경과, 국립식량과학원) ;
  • 강신구 (재배환경과, 국립식량과학원) ;
  • 박정화 (재배환경과, 국립식량과학원) ;
  • 김민태 (재배환경과, 국립식량과학원) ;
  • 강인정 (재배환경과, 국립식량과학원) ;
  • 양운호 (재배환경과, 국립식량과학원)
  • Kim, Sukjin (Crop cultivation & Environment Research Division, National Institute of Crop Science, RDA) ;
  • Cho, Hyun-Suk (Crop production& Physiology Research Division, NICS, RDA) ;
  • Choi, Jong-Seo (Crop cultivation & Environment Research Division, National Institute of Crop Science, RDA) ;
  • Park, Ki Do (Crop foundation Research Division, NICS, RDA) ;
  • Jang, Jeong-Sook (Crop cultivation & Environment Research Division, National Institute of Crop Science, RDA) ;
  • Kang, Shin-gu (Crop cultivation & Environment Research Division, National Institute of Crop Science, RDA) ;
  • Park, Jeong-Hwa (Crop cultivation & Environment Research Division, National Institute of Crop Science, RDA) ;
  • Kim, Min-Tae (Crop cultivation & Environment Research Division, National Institute of Crop Science, RDA) ;
  • Kang, In-Jeong (Crop cultivation & Environment Research Division, National Institute of Crop Science, RDA) ;
  • Yang, Woonho (Crop cultivation & Environment Research Division, National Institute of Crop Science, RDA)
  • 투고 : 2016.11.14
  • 심사 : 2016.11.24
  • 발행 : 2016.12.31

초록

벼 재배시 경운과 재배방법 따른 메탄 발생량 및 토양탄소함량변화를 구명하기위해 경운-이앙, 경운-무논점파, 최소경운-건답직파 및 무경운-건답직파를 비교하는 시험을 수행한 결과 다음과 같다. 1. 메탄 발생량은 경운-이앙 처리구에서 가장 많았으며 경운-무논점파>최소경운-건답직파=무경운 건답직파 순으로 적었다. 2. 메탄의 발생량과 벼 생육과의 관계를 보면 생육초기 작물의 생체량이 많아질수록 메탄 발생량이 증가는 경향을 보였다. 3. 토양 탄소함량은 시험전과 비교하여 경운-이앙 처리구에서 가장 낮은 값을 나타내었고, 최소경운-건답직파와 무경운 처리구에서 높은 값을 나타내었다. 4. 최소경운-건답직파 및 무경운 처리구의 쌀수량이 경운-이앙 처리구에 비해 다소 적었으나 통계적으로 유의한 차이는 없었다.

The increase in carbon stock and sustainability of crop production are the main challenges in agricultural fields relevant to climate change. Methane is the most important greenhouse gas emitted from paddy fields. This study was conducted to investigate the effects of tillage and cultivation methods on methane emissions in rice production in 2014 and 2015. Different combinations of tillage and cultivation were implemented, including conventional tillage-transplanting (T-T), tillage-wet hill seeding (T-W), minimum tillage-dry seeding (MT-D), and no-tillage-dry seeding (NT-D). The amount of methane emitted was the highest in T-T treatment. In MT-D and NT-D treatments, methane emissions were significantly decreased by 77%, compared with that in T-T treatment. Conversely, the soil total carbon (STC) content was higher in MT-D and NT-D plots than in tillage plots. In both years, methane emissions were highly correlated with the dry weight of rice ($R^2=0.62{\sim}0.96$), although the cumulative emissions during the rice growing period was higher in 2014 than in 2015. T-T treatment showed the highest $R^2$ (0.93) among the four treatments. Rice grain yields did not significantly differ with the tillage and cultivation methods used. These results suggest that NT-D practice in rice production could reduce the methane emissions and increase the STC content without loss in grain yield.

키워드

참고문헌

  1. Ahn, J. H., M.Y. Choi, B. Y. Kim, J. S. Lee, J. Song, G. Y. Kim, and H. Y. Weon. 2014. Effects of Water-Saving Irrigation on emissions of greenhouse gases and prokaryotic Communities in rice paddy soil. Microb Ecol. 68: 271-283. https://doi.org/10.1007/s00248-014-0371-z
  2. Ball, B. C., A. Scott, and J. P. Parker. 1999. Field $N_2O$, $CO_2$, and $CH_4$ fluxes in relation to tillage, compaction and soil quality in scotland. Soil Till Res 53(1): 29-39. https://doi.org/10.1016/S0167-1987(99)00074-4
  3. Bayer, C., F. D. Costa, G. M. Pedroso, T. Zschornack, E. S. Camargo, M. A. de Lima, R. T. S. Frigheto, J. Gomes, E. Marcolin, and V. R. M. Macedo. 2014. Yield-scaled greenhouse gas emissions from flood irrigated rice under long-term conventional tillage and no-till systems in a humid subtropical climate. Field Crops Res. 162 : 60-69. https://doi.org/10.1016/j.fcr.2014.03.015
  4. Bayer, C., J. Gomes, F. C. B. Vieira, J. A. Zanatta, M. D. Piccolo, and J. Dieckow. 2012. Methane emission from soil under long-term no-till cropping systems. Soil Till Res 124 : 1-7. https://doi.org/10.1016/j.still.2012.03.006
  5. Chung, N. J., Y. H. Yoon, C. K. Kim, and Y. S. Kang. 2000. Weedy rice control by no-tillage direct seeding on flooded paddy field. Korea. J. Crop. Science. 45 : 194-194.
  6. Hong, K. P., Y. G. Kim, W. K. Joung, G. M. Shon, G. W. Song, Y. J. Choi, and Z. R. Choe. 2003. Changes in physicochemical properties of soil, yield and milling quality of rice grown under the long-term no-till paddy field covered with Chinese milk vetch. Korean J. Soil Sci. Fert., 48 : 178-190.
  7. Huang, M., X. F. Zhou, F. B. Cao, B. Xia, and Y. B. Zou. 2015. No-tillage effect on rice yield in china : A meta-analysis. Field Crops Res. 183 : 126-137. https://doi.org/10.1016/j.fcr.2015.07.022
  8. IPCC. 2014. Edenhofer O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K., Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlomer, C. von Stechow, T. Zwickel, and J.C. Minx (eds.). Climate Change 2014 : Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment. Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  9. Ju, O., J. H. Lee, B. R. Choi, T. J. Won, K. R. Cho, J. S. Seo, Y. S. Kim, and I. T. Park. 2013. Effects of PAA (Polyaspartic Acid) Contained Complex Fertilizer on Rice Growth and $CH_4$ emission from Rice Cultivation. Journal of Environmental Impact Assessment. 22(6) : 705-711. https://doi.org/10.14249/eia.2013.22.6.705
  10. KNIR, 2015. 2015 National Greenhouse Gas Inventory Report of Korea.
  11. Ko, J. Y., J. S. lee, M. T. Kim, H. W. Kang, U. G. Kang, D. C. Lee, Y. G. Shin. K. Y. Kim, and K. B. Lee. 2002. Effects of cultural practices on methane emission in tillage and no-tillage practice from rice paddy fields. Korean J. Soil Sci. Fert., 35 : 216-222.
  12. Lee, B. J., Z. R. Choi, S. H. Oh, J. H. Kim, S. Y. Kim, and J. W. Ahn. 2007. Characteristics of growth of Korea native rice cultivas under the no-till rice-vetch cropping system. Korean J. Intl. Agri., 19 : 179-284.
  13. Li, C. F., Z. S. Zhang, L. J. Guo, M. L. Cai, and C. G. Cao. 2013. Emissions of $CH_4$ and $CO_2$ from double rice cropping systems under varying tillage and seeding methods. Atmos. Environ. 80 : 438-444. https://doi.org/10.1016/j.atmosenv.2013.08.027
  14. Li, D. M., M. Q. Liu, Y. H. Cheng, D. Wang, J. T. Qin, J. G. Jiao, H. X. Li, and F. Hu. 2011. Methane emissions from double-rice cropping system under conventional and no tillage in southeast china. Soil Till Res 113(2) : 77-81. https://doi.org/10.1016/j.still.2011.02.006
  15. Metay, A., R. Oliver, E. Scopel, J. M. Douzet, J. A. Alves Moreira, F. Maraux, B. J. Feigl, and C. Feller. 2007. $N_2O$ and $CH_4$ emissions from soils under conventional and no-till management practices in goiania (cerrados, brazil). Geoderma 141(1-2) : 78-88. https://doi.org/10.1016/j.geoderma.2007.05.010
  16. Minami. K. 1994. Methane from rice production. Fertilizer Research 37 : 167-179. https://doi.org/10.1007/BF00748935
  17. Minamikawa, K., N. Sakai, and H. Hayashi. 2005. The effects of ammonium sulfate application on methane emission and soil carbon content of a paddy field in japan. Agr Ecosyst Environ 107(4) : 371-379. https://doi.org/10.1016/j.agee.2004.10.027
  18. NAAS. 2013. Cultivation Methods to Reduce Greenhous gases. National Academy Agriculture Science. Jeonju, Korea.
  19. NICS. 2010. Core technology for direct rice cultivation. National Institute Crop Science. Milyang, Korea.
  20. RDA. 2013. General publications of Agricultural Technology; Direct seeding, RDA. 2013.
  21. RDA. 2015. Nongsaro : Agricultural Technology Information. http://www.nongsaro.go.kr.
  22. Su. J., C. Hu, X. Yan, Y. Jin, Z. Chen, Q. Guan, Y. Wang1, D. Zhong, C. Jansson, F.Wang, A. Schnurer, and C. Sun. 2015. Expression of barley SUSIBA2 transcription factor yields high-starch low-methane rice. Nature. 523 : 602-620. https://doi.org/10.1038/nature14673
  23. Zhang, Z., C. Cao, L. Gau, and C. Li. 2016. Emissions of $CH_4$ and $CO_2$ from paddy fields as affected by tillage practices and crop residues in central China. Paddy and Water Environment 14(1) : 85-92. https://doi.org/10.1007/s10333-015-0480-4

피인용 문헌

  1. Analysis of research trends in methane emissions from rice paddies in Korea vol.44, pp.4, 2017, https://doi.org/10.7744/kjoas.20170055