DOI QR코드

DOI QR Code

Germination-Induced Changes in Flavoring Compound Profiles and Phytonutrient Contents in Scented Rice

향미벼의 발아 전 후 향기 성분 및 기능성 지질성분 함량의 변화

  • Received : 2016.08.31
  • Accepted : 2016.11.16
  • Published : 2016.12.31

Abstract

Although rice has been cultivated as a major food crop for approximately 5,000 years, the interest of customers in 'scented rice' is a recent trend in the Korean market. As a part of developing a germinated scented rice variety, the newly bred scented rice variety 'Cheonjihyang-1 se' was germinated for 24 h, and changes in profiles of flavor-related volatiles, lipophilic phytonutrients, and fatty acids were investigated. The profiling of volatile compounds by using a headspace-gas chromatography-mass spectrometry (HS-GC-MS) revealed a total of 56 odor-active flavoring compounds; 52 at the pre-germination stage, 51 at the post-germination stage, and 47 common at both stages. The major flavoring compounds were nonanol and benzene, which constituted 11.5% and 6.6%, respectively, of the total peak area in pre-germinated rice, and 19.4% and 6.5%, respectively, in post-germinated rice. Germination induced an increase in 13 flavoring compounds, including 3,3,5-trimethylheptane and 1-pentadecene, which increased by 763 and 513%, respectively by germination. However, we observed a germination-induced decrease in most of the other flavoring compounds. Especially, the most important scented rice-specific popcorn-flavoring compound, 2-acetyl-1-pyrroline, showed 89% decrease due to germination. Furthermore, the germination of scented rice induced a decrease in the content of various phytonutrients. For example, the total contents of phytosterols, squalene, and tocols decreased from 207.97, 31.74, and $25.32{\mu}g\;g^{-1}$ at pre-germination stage down to 136.66, 25.12, and $17.76{\mu}g\;g^{-1}$, respectively at post-germination stage. The fatty acid compositions were also affected by germination. The composition of three major fatty acids, linoleic, oleic, and palmitic acids, increased from 36.6, 34.2, and 24.4%, respectively, at the pre-germination stage to 37.9, 36.9, and 20.7%, respectively, at the post-germination stage. All these results suggested significant changes in the flavor-related compounds and phytonutrients of the scented rice variety 'Cheonjihyang-1 se' during the process of germination, and subsequently the need for developing a more precise process of germination to enhance the flavor and nutritional quality of the germinated scented rice products.

새로운 식품 소재의 개발을 목적으로 향미벼 신품종을 이용하여 발아현미를 제조하고 발아 전 후 종실에 함유된 향기성분과 생리활성 물질, 그리고 지방산 조성의 변화를 관찰한 결과는 다음과 같다. 1. 향기성분은 발아 전 52개, 발아 후 51개 등 총 56개 성분이 동정되었으며 이들은 hydrocarbon(29%)과 alcohol(23%) 및 aldehyde(21%)류로 분류되었으며, 주요 향기성분으로는 nonanal, benzene, 1-octanol, 1-hexanol, furan, decanal 등이 동정되었다. 2. 발아로 인하여 heptane,3,3,5-trimethyl, 1-pentadecene, 2-heptanone 등 13개 성분은 함량이 증가한 반면, 향미벼 특유의 팝콘향을 나타내는 2-acetyl-1-pyrroline을 비롯하여 1-nonanol, 1-heptanol, 1-hexanol 등 39개 성분은 발아로 인하여 함량이 감소하였다. 3. 향기 성분의 함량을 이용한 PLS-DA 분석 시 뚜렷하게 향기 특성에 따라 발아 전과 발아 후의 구별이 가능하였으며, 2-acetyl-1-pyrroline, 2-octanone 등은 발아 전의, 그리고 benzaldehyde, tridecene 등은 발아 후의 특징적인 향기성분으로 나타났다. 4. 발아된 향미벼의 campesterol, stigmasterol, sitosterol 등 phytosterol류와 squalene, 그리고 5종의 tocols 등 생리활성물질 함량은 모두 발아 전에 비해 낮은 것으로 나타났다. 5. 향미벼의 주요 지방산은 linoleic, oleic 및 palmitic acid였으며 발아로 인하여 linoleic acid와 oleic acid는 각각 1.3%, 2.7%의 증가하고 palmitic acid는 3.7%의 조성 비율이 감소하는 것으로 나타났다.

Keywords

References

  1. Baradi, M. A. U. and A. R. Elepano. 2012. Aroma loss in rice as affected by various conditions during postharvest operations. Phiipp. Agric. Scientist. 95 : 260-266.
  2. Bryant, R. J. and A. M. McClung. 2011. Volatile profiles of aromatic and non-aromatic rice cultivars using SPME/GC-MS. Food Chemistry. 124 : 501-513. https://doi.org/10.1016/j.foodchem.2010.06.061
  3. Buttery, R. G., J. G. Turnbaugh, and L. C. Ling. 1986. Contribution of volatiles to rice aroma. J. Agric. Food Chem. 36 : 1006-1009.
  4. Cho, K. S., H. J. Kim, S. M. Moon, J. H. Kang, and Y. S. Lee. 2006. Optimization of one-step extraction/methylation method for analysis of fatty acid composition in brown rice. Korea. J. Crop Sci. 51 : 89-94.
  5. Choi, Y. G., M. K. Kim, K. H. Jung, S. Y. Cho, H. P. Moon, B. T. Jun, H. C. Choi, N. G. Park, G. W. Kim, K. H. Hwang, Y. S. Kim, R. K. Park, and J. Y. Cho. 1995. An aromatic semi-dwarf lodging resistant rice variety 'Hyangmibyeo1ho'. Agricultural Science Reports of RDA, Korea. 37 : 67-74.
  6. Choi, I. S., J. Suh, J. H. Kim, and S. L. Kim. 2009. Effects of germination on fatty acid and free amino acid profiles of brown rice 'Keunnun'. Food Sci. Biotehcnol. 18 : 799-802.
  7. Grimm, C., C. Bergman, J. T. Delgado, and R. Bryant. 2001. Screening for 2-acetyl-1-pyrroline in the headspace of rice using SPME/GC-MS. J. Agric. Food Chem. 49 : 2445-249.
  8. Jezussek, M., B. O. Juliano, and P. Schieberle. 2002. Comparisons of key aroma compounds in cooked brown rice varieties based on aroma extraction dilution analysis. J. Agric. Food Chem. 50 : 1101-1105. https://doi.org/10.1021/jf0108720
  9. Jung, H. Y., D. H. Lee, H. Y. Baek, and Y. S. Lee. 2008. Pre- and post-germination changes in pharmaceutical compounds of germinated brown rice. Korea. J. Crop Sci. 53 : 37-43.
  10. Kim, H. Y., I. G. Hwang, T. M. Kim, K. S. Woo, D. S. Park, J. H. Kim, D. J. Kim, J. Lee, Y. R. Lee, and H. S. Jeong. 2012. Chemical and functional components in different parts of rough rice (Oryza sativa L.) before and after germination. Food Chemistry. 134 : 288-293. https://doi.org/10.1016/j.foodchem.2012.02.138
  11. Kim, W. Y., J. H. Kim, S. A. Lee, S. N. Ryu, S. J. Han, and S. G. Hong. 2010. Antioxidative and anti-diabetic activity of C3GHi, novel black rice breed. Korean J. Crop Sci. 55 : 38-46.
  12. Kim, J. S., J. R. Cho, J. G. Gwang, T. S. Kim, S. N Ahn, and S. Y. Lee. 2009. Comparison analysis of aromatic compounds in the aromatic rice germplasm by gas chromatography and mass spectrometry. Korean J. Crop Sci. 54 : 88-103.
  13. Kim, M. Y. 2014. Effects of high hydrostatic pressure treatment on the enhancement of functional components and physiological activities of germinated Oryza sativa L. M. S. Thesis. Chungbook Univ.
  14. Kim, S. L., Y. K. Son, J. R. Son, and H. S. Huh. 2001. Effect of germination condition and drying methods on physicochemical properties of sprouted brown rice. Korean J. Crop Sci. 46 : 221-228.
  15. Kwak, J. E., S. W. Yoon, D. J. Kim, M. R. Yoon, J. H. Lee, S. K. Oh, I. H. Kim, J. S. Lee, J. S. Lee, and J. K. Chang. 2013. Changes in nutraceutical lipid constituents of pre- and post-germinated brown rice oil. Korean J. Food & Nutr. 26 : 591-600. https://doi.org/10.9799/ksfan.2013.26.3.591
  16. Kovach, M. J., M. N. Calingacion, M. A. Fitzgerald, and S. R. McCouch. 2009. The origin and evolution of fragnance in rice (OryzasativaL.). PNAS 106 : 14444-14449. https://doi.org/10.1073/pnas.0904077106
  17. Lee, B. Y., J. R. Son, M. Ushio, K. Keiji, and M. Akio. 1991. Changes of volatile components of cooked rice during storage at $70^{\circ}C$. J. Korean Soc. Food Sci. Technol. 23 : 610-613.
  18. Lee, K. B., D. K. Jun, and J. C. Chae. 2003. Effect of nitrogen fertilization on quality characteristics of rice grain and aroma-active compounds of cooked rice. Korea J. Crop Sci. 48 : 527-533.
  19. Lee, Y. R., I. G. Hwang, K. S. Woo, H. Y. Kim, D. S. Park, J. H. Kim, Y. B. Kim, J. Lee, and H. S. Jeong. 2011. Hypoglycemic effects of germinated rough rice extract in Steptozotocin-induced diabetic rats. J. Food Sci. Nutr. 16 : 272-277.
  20. Moon, S. H., K. B. Lee, and M. K. Han. 2010. Comparison of GABA and vitamin contents of germinated brown rice soaked indifferent soaking solution. Korean J Food & Nutr 23 : 511-515.
  21. Nijssen, L. M., C. A. van Ingen-Visscher, and J. J. H. Donders, 2016. VCF Volatile Compounds in Food : database Version 16.2 Zeist (The Netherlands): Triskelion (http://www.vcf-online.nl/VcfGuide.cfm?title=Bibliographic)
  22. Oh, S. K., P. S. Hwang, K. J. Kim, Y. K. Kim, and J. H. Lee. 2010. Changes in nutritional components throughout germination in paddy rice and brown rice. J. Food Sci. Nutr. 15 : 113-119.
  23. Shu, X. L., T. Frank, Q. Y. Shu, and K. H. Engel. 2008. Metabolite profiling of germinating rice seeds. J. Agric. Food Chem. 56 : 11612-11620. https://doi.org/10.1021/jf802671p
  24. Singh R. K., U. S. Sigh, and G. S. Khush. 2000. Aromatic Rices. Oxford & IBH Publishing Co/ Pvt. Ltd. pp. 292.
  25. Sung, J., J. Lee, S. K. Oh, J. S. Lee, and W. S. Choi. 2013. Changes in phytochemical content and antiproliferative activity of germinated Keunnun and Ilpum rice varieties. J. Korean Soc. Food Sci. Nutr. 42 : 1157-1161. https://doi.org/10.3746/jkfn.2013.42.7.1157
  26. Xia, J., I. Sinelnikov, B. Han, and D. S. Wishart. 2015. Metabo Analyst 3.0- making metabolomics more meaningful. Nucl. Acids Res. 43, W251-257. https://doi.org/10.1093/nar/gkv380

Cited by

  1. Physicochemical Characteristics of Cultivated Aromatic Rice Germplasm and Comparative Analysis of Flavor Components During Transplanting Time vol.36, pp.3, 2017, https://doi.org/10.5338/KJEA.2017.36.3.26
  2. Golden queen 3: A High-quality Rice Variety with Low Amylose Contents and Aroma vol.53, pp.2, 2021, https://doi.org/10.9787/kjbs.2021.53.2.177