DOI QR코드

DOI QR Code

Infrared Imaging and a New Interpretation on the Reverse Contrast Images in GaAs Wafer

GaAs 웨이퍼의 적외선 영상기법 및 콘트라스트 반전 영상에 대한 새로운 해석

  • Kang, Seong-jun (Department of Electronics, Information and Communication Engineering, Mokpo National University)
  • Received : 2016.08.09
  • Accepted : 2016.10.10
  • Published : 2016.11.30

Abstract

One of the most important properties of the IC substrate is that it should be uniform over large areas. Among the various physical approaches of wafer defect characterization, special attention is to be payed to the infrared techniques of inspection. In particular, a high spatial resolution, near infrared absorption method has been adopted to directly observe defects in semi-insulating GaAs. This technique, which relies on the mapping of infrared transmission, is both rapid and non-destructive. This method demonstrates in a direct way that the infrared images of GaAs crystals arise from defect absorption process. A new interpretation is presented for the observed reversal of contrast in the infrared absorption of nonuniformly distributed deep centers, related to EL2, in semi-insulating GaAs. The low temperature photoquenching experiment has demonstrated in a direct way that the contrast inverse images of GaAs wafers arise from both absorption and scattering mechanisms rather than charge re-distribution or local variation of bandgap.

IC 기판의 가장 중요한 성질들의 하나는 넓은 영역에 걸쳐 균일해야만 한다는 것이다. 웨이퍼 결함 분석의 다양한 물리적 접근 방법 중에서 적외선 조사 기법에 특별한 관심이 모아지고 있다. 특히, 높은 공간적 분해력을 가지고 있는 근적외선 흡수 방법은 반-절연 GaAs 내의 결함들을 직접적으로 관찰하는데 이용되고 있다. 적외선 전송에 기초를 둔 이 기법은 신속하고 비파괴 적이다. 이 방법은, 직접적으로 GaAs 반도체의 적외선 영상은 결함의 광흡수 작용에 기인한 것임을 밝히고 있다. 반-절연 GaAs 내의 EL2에 관련된, 비 균일 적으로 분포된 결함들의 적외선 흡수 영상에서 콘트라스트가 반전되는 현상에 대해 새로운 모델을 제시하고 있다. 저온 포토퀀칭 실험은, 직접적인 방법으로, GaAs 웨이퍼의 콘트라스트 반전 영상은 밴드갭의 지엽적인 변동이나 전하 재분포에 의한 것이 아니라 흡수와 산란의 두 메커니즘에 의한 것임을 증명하고 있다.

Keywords

References

  1. M. Baumgartner, K. Lohnert, G. Nagel, H. Rufer, E. Tomzig, "Influence of residual impurities on the electrical properties and annealing behaviour of S.I. GaAs" in Gallium Arsenide and Related Compounds, ed. by A Christou. Philadelpia, PA: IOP Publishing Ltd., ch. 2, pp. 97-100, 1987.
  2. S. J. Kang, "Method for evaluating the temperature coefficient of GaAs bandgap by infrared imaging technique," Journal of the institute of electronics engineers of Korea, vol. 38, no. 5, pp. 338-346, May 2001.
  3. S. J. Kang, "Evidence of material-dependent and temperature quenching rates by infrared imaging in GaAs," Journal of the institute of electronics engineers of Korea, vol. 40, no. 7, pp. 469-474, Jul. 2003.
  4. M.R. Brozel, L. Grant, R.M. Ware, D.J. Stirland, "Direct observation of the principal deep level EL2 in undoped semi-insulating GaAs," Applied. Physics Letters, vol. 42, pp. 610-613, Apr. 1983. https://doi.org/10.1063/1.94019
  5. M. R. Brozel, E.J. Folkes, D. J. Stirland, "Three dimensional imaging of the distribution of $1{\mu}m$ absorption (EL2) in undoped SI-LEC GaAs," Inst. Phys.Conf., Biarritz series, no. 74, pp. 59-69, 1984.
  6. S. J. Kang, "Contribution a l'etude du centre EL2 dans GaAs semi-isolant par photoextinction des images de transmission infra-rouge," (Contribution to the study of EL2 centre in semi-insulating GaAs by photoquenching of infrared transmission images), Doctoral dissertation, USTL (Montpellier II, France), 1990.
  7. J. P. Fillard, "Infrared imaging and EL2," Revue de Physique Appliquee, 23, pp. 765-777, May 1988. https://doi.org/10.1051/rphysap:01988002305076500
  8. J. P. Fillard, "Reconnaissance des defauts et traitement d'image pour les composes III-V," Annales des Telecommunications, vol. 42, no. 3-4, pp. 149-180, Mar. 1987.
  9. M. S. Skolnick, L.J. Reed and A.D. Pitt, "Photoinduced quenching of infrared absorption nonuniformities of large diameter GaAs crystals," Applied Physics Letters, 44, pp. 447-449, Feb. 1984. https://doi.org/10.1063/1.94762
  10. S. J. Kang, S. S. Lee, "The role of EL2 in the infrared transmission images of defects in semi-insulating GaAs," International Journal of Information and Communication Engineering, vol. 9, no. 6, pp. 725-728 , Dec. 2011.
  11. Hans J. Queisser, "Near band edge reverse contrast image in GaAs," Applied Physics Letters, 46 (8), 15, pp. 757-759, Apr. 1985. https://doi.org/10.1063/1.95498
  12. M. Castagne, J.P. Fillard, J. Bonnafe, P. Gall, "Defects in semiconductors," Mater. Sci. Forum, Paris, vol. 371-375, 1986.

Cited by

  1. Quantitative Analysis on Near Band Edge Images in GaAs Wafer vol.21, pp.5, 2016, https://doi.org/10.6109/jkiice.2017.21.5.861