DOI QR코드

DOI QR Code

Comparing the Results of Big-Data with Questionnaire Survey

빅데이터 분석결과와 실증조사 결과의 비교

  • Kim, Do-Goan (Division of Information and Electronic Commerce, Wonkwang University) ;
  • Shin, Seong-Yoon (Department of Computer Information Engineering, Kunsan National University)
  • Received : 2016.10.30
  • Accepted : 2016.11.06
  • Published : 2016.11.30

Abstract

The rapid diffusion of smart phones and the development of data storage and analysis technology have made the field of big-data a promising industry in the future. In the marketing field, big-data analysis on social data can be used for understanding the needs of consumers as an effective and efficient marketing tool. Before the age of big-data, companies had relied upon the traditional methods such as questionnaire survey and marketing test in which a small number of consumers had participated. The traditional methods have still been used. Although both of big-data analysis and traditional methods are useful to understand consumers. It is need to check whether the results from both include similar implications. In this point, this study attempts to compare the results of big-data analysis with that of questionnaire survey on some cosmetics brands methods. As the results of this study, both results of big-data analysis and questionnaire survey include similar implications.

스마트폰 보급의 확산과 데이터 저장 및 분석 기법의 발전은 빅데이터 관련 산업을 미래의 유망 산업으로 탈바꿈하게 만들었다. 마케팅 분야에서는 소셜 데이터를 분석하여 소비자의 니즈를 파악하고, 효과적인 마케팅의 수단으로 활용하고 있다. 빅데이터 분석이 불가능했던 시대에는 소비자를 이해하기 위해서는 소수의 소비자를 대상으로 하는 조사 및 실험에 의존할 수밖에 없었으며, 이러한 전통적인 시장조사 방법은 현재도 활용되고 있다. 빅데이터 분석과 전통적인 조사방법 모두 고객을 이해하는 중요한 방법이기는 하지만, 두 가지 방법을 통해 도출된 결과가 소비자의 트랜드에 대하여 유사한 시사점을 주는지는 확인할 필요가 있다. 이러한 점에서 본 연구에서는 화장품 브랜드를 대상으로 소셜 데이터 분석 결과와 소비자를 대상으로 하는 설문조사의 결과를 비교하고자 하였다. 연구 결과 두 가지 방법 모두 유사한 시사점을 제공하는 것으로 나타났다.

Keywords

References

  1. J. C. Koh, K. U. Lee, J. Y. Jeong, and K. S. Kim, "Correspondence strategy for big data's new customer value and creation of business," Journal of Korea Safety Management & Science, vol. 14, no. 4, pp. 229-238, Dec. 2012.
  2. S. K. Lee, "A review of big data analysis based on marketing perspective," Korea Journal of Business Adminstration, vol. 28, no. 1, pp. 21-35, Jan. 2015.
  3. M. J. Lee, and W. J. Kim, "Advanced analytics and technology for big data," Entrue Journal of Information Technology, vol. 11, no. 1, pp. 45-56, Special Issue. 2012.
  4. S. J. Shin, "SNS using big data utilization research," The Journal of the Institute of Internet, Broadcasting and Communications, vol. 12, no. 6, pp. 267-272, Dec. 2012.
  5. J. Heo, C. H. Lee, H. J. Oh, Y. C. Yoon, H. K. Kim, Y. H. Jo, and C. Y. Ock, "Web science: automatic generation of issue analysis report based on social big data mining," KIPS Transaction on software and data engineering, vol. 13, no. 12, pp. 553-564, Dec. 2014.
  6. Y. K. Jung, M. S. Suk, and C. J. Kim, "A study on the success factors of big data through an analysis of introduction effect of big data," Journal of Digital Convergence, vol. 12, no. 11, pp. 241-248, Nov. 2014. https://doi.org/10.14400/JDC.2014.12.11.241
  7. S. D. Yoo, K. D. Choi, and S. Y. Sin, "Characterizing business strategy in a new ecosystem of big data," Journal of Digital Convergence, vol. 12, no. 4, pp. 1-9, Apr. 2014.
  8. M. H. Jang, and Y. I. Yoon, "Research into changes in government policies and public perceptions on camping via analyses of big data," Tourism Study, vol. 31, no. 1, pp. 91-112, Feb. 2016.
  9. J. S. Kim, E. J. Kwon, and T. M. Song, "Big data supply demand prediction using social big data, applying data mining decision making tree," in Proceeding of the 2014 KMIS Spring conference, Chunan: Korea, pp. 708-714, 2014.
  10. J. W. Kim, "big data's effect on its practical use for box-office success of films: focusing on the process of management of opion mining on 'Roaring Currents," Journal of the Korea Entertainment Industry Association, vol. 9, no. 2, pp. 81-90, Jun. 2015. https://doi.org/10.21184/jkeia.2015.06.9.2.81
  11. D. G. Kim, "The reflection of religions in big data and the usage of big data," Won-Buddhist Thought & Religious Culture, vol. 64, no. 2, pp. 191-219, Jun. 2015.