DOI QR코드

DOI QR Code

Identification of Lys49-PLA2 from crude venom of Crotalus atrox as a human neutrophil-calcium modulating protein

  • Sultan, Md. Tipu (Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University) ;
  • Li, Hong-Mei (Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University) ;
  • Lee, Yong Zu (ProteomeTech Inc.) ;
  • Lim, Soon Sung (Department of Food Science and Nutrition, Hallym University) ;
  • Song, Dong-Keun (Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University)
  • Received : 2015.09.17
  • Accepted : 2016.01.03
  • Published : 2016.03.01

Abstract

We fortuitously observed a human neutrophil intracellular free-calcium concentration ($[Ca^{2+}]_i$) increasing activity in the commercially available phosphodiesterase I (PDE I), which is actually dried crude venom of Crotalus atrox. As this activity was not observed with another commercially available pure PDE I, we tried to find out the causative molecule(s) present in 'crude' PDE, and identified Lys49-phospholipase A2 (Lys49-PLA2 or K49-PLA2), a catalytically inactive protein which belongs to the phospholipase A2 family, by activity-driven three HPLC (reverse phase, size exclusion, reverse phase) steps followed by SDS-PAGE and LC-MS/MS. K49-PLA2 induced $Ca^{2+}$ influx in human neutrophils without any cytotoxic effect. Two calcium channel inhibitors, 2-aminoetoxydiphenyl borate (2-APB) ($30{\mu}M$) and SKF-96365 ($20{\mu}M$) significantly inhibited K49-PLA2-induced $[Ca^{2+}]_i$ increase. These results suggest that K49-PLA2 modulates $[Ca^{2+}]_i$ in human neutrophils via 2-APB- and SKF-96365-sensitive calcium channels without causing membrane disruption.

Keywords

References

  1. Segal AW. How neutrophils kill microbes. Annu Rev Immunol. 2005;23:197-223. https://doi.org/10.1146/annurev.immunol.23.021704.115653
  2. Berridge MJ, Bootman MD, Lipp P. Calcium-a life and death signal. Nature. 1998;395:645-648. https://doi.org/10.1038/27094
  3. Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol. 2000;1:11-21.
  4. Parekh AB, Penner R. Store depletion and calcium influx. Physiol Rev. 1997;77:901-930. https://doi.org/10.1152/physrev.1997.77.4.901
  5. Salmon MD, Ahluwalia J. Pharmacology of receptor operated calcium entry in human neutrophils. Int Immunopharmacol. 2011;11:145-148. https://doi.org/10.1016/j.intimp.2010.11.006
  6. Calvete JJ, Fasoli E, Sanz L, Boschetti E, Righetti PG. Exploring the venom proteome of the western diamondback rattlesnake, Crotalus atrox, via snake venomics and combinatorial peptide ligand library approaches. J Proteome Res. 2009;8:3055-3067. https://doi.org/10.1021/pr900249q
  7. Bahk YY, Kim SA, Kim JS, Euh HJ, Bai GH, Cho SN, Kim YS. Antigens secreted from Mycobacterium tuberculosis: identification by proteomics approach and test for diagnostic marker. Proteomics. 2004;4:3299-3307. https://doi.org/10.1002/pmic.200400980
  8. Menez A, Stocklin R, Mebs D. 'Venomics' or : The venomous systems genome project. Toxicon. 2006;47:255-259. https://doi.org/10.1016/j.toxicon.2005.12.010
  9. Lomonte B, Tsai WC, Urena-Diaz JM, Sanz L, Mora-Obando D, Sanchez EE, Fry BG, Gutierrez JM, Gibbs HL, Sovic MG, Calvete JJ. Venomics of New World pit vipers: genus-wide comparisons of venom proteomes across Agkistrodon. J Proteomics. 2014;96:103-116. https://doi.org/10.1016/j.jprot.2013.10.036
  10. Lomonte B, Angulo Y, Sasa M, Gutierrez JM. The phospholipase A2 homologues of snake venoms: biological activities and their possible adaptive roles. Protein Pept Lett. 2009;16:860-876. https://doi.org/10.2174/092986609788923356
  11. Mora R, Maldonado A, Valverde B, Gutierrez JM. Calcium plays a key role in the effects induced by a snake venom Lys49 phospholipase A2 homologue on a lymphoblastoid cell line. Toxicon . 2006;47:75-86. https://doi.org/10.1016/j.toxicon.2005.10.001
  12. Ward RJ, Chioato L, de Oliveira AH, Ruller R, Sa JM. Activesite mutagenesis of a Lys49-phospholipase A2: biological and membrane-disrupting activities in the absence of catalysis. Biochem J. 2002;362:89-96. https://doi.org/10.1042/bj3620089
  13. Petan T, Krizaj I, Pungercar J. Restoration of enzymatic activity in a Ser-49 phospholipase A2 homologue decreases its $Ca^{2+}$-independent membrane-damaging activity and increases its toxicity. Biochemistry. 2007;46:12795-12809. https://doi.org/10.1021/bi701304e
  14. Tsai IH, Chen YH, Wang YM, Tu MC, Tu AT. Purification, sequencing, and phylogenetic analyses of novel Lys-49 phospholipases A(2) from the venoms of rattlesnakes and other pit vipers. Arch Biochem Biophys. 2001;394:236-244. https://doi.org/10.1006/abbi.2001.2524
  15. Tonello F, Simonato M, Aita A, Pizzo P, Fernandez J, Lomonte B, Gutierrez JM, Montecucco C. A Lys49-PLA2 myotoxin of Bothrops asper triggers a rapid death of macrophages that involves autocrine purinergic receptor signaling. Cell Death Dis. 2012;3:e343. https://doi.org/10.1038/cddis.2012.68
  16. Chung S, Kim YH, Joeng JH, Ahn DS. Transient receptor potential c4/5 like channel is involved in stretch-induced spontaneous uterine contraction of pregnant rat. Korean J Physiol Pharmacol. 2014;18:503-508. https://doi.org/10.4196/kjpp.2014.18.6.503

Cited by

  1. Effects of venoms on neutrophil respiratory burst: a major inflammatory function vol.27, pp.None, 2016, https://doi.org/10.1590/1678-9199-jvatitd-2020-0179
  2. A Meta-Analysis of the Protein Components in Rattlesnake Venom vol.13, pp.6, 2016, https://doi.org/10.3390/toxins13060372