DOI QR코드

DOI QR Code

Delay Compensation Mechanism for a Link Failure in Control Networks of Railway Vehicles

철도 차량을 위한 제어용 통신망에서 링크 장애 시 딜레이 보상 기법

  • Hwang, Hwanwoong (Department of Electrical and Information Engineering, Seoul National University of Science and Technology) ;
  • Kim, Sanghyun (Department of Electrical and Information Engineering, Seoul National University of Science and Technology) ;
  • Yun, Ji-Hoon (Department of Electrical and Information Engineering, Seoul National University of Science and Technology)
  • 황환웅 (서울과학기술대학교 전기정보공학과) ;
  • 김상현 (서울과학기술대학교 전기정보공학과) ;
  • 윤지훈 (서울과학기술대학교 전기정보공학과)
  • Received : 2015.11.26
  • Accepted : 2016.01.20
  • Published : 2016.02.25

Abstract

For higher reliability against a link failure of a control network in railway vehicles, a recovery mechanism is needed. We introduce a problem that, when a link failure occurs in a ring-topology control network, a node may experience a significant increase of transmission delay depending on its relative position within the network. We then propose two mechanisms to solve this problem: (1) differentiating and prioritizing node traffic in forwarding; and (2) switching some nodes to a backup bus-topology network. Our simulation study shows that, while the first mechanism achieves a limited gain by only compensating queuing delay, the second one gets a sufficient gain which is impacted by the number of nodes switched to the bus network.

철도 차량 내 전자 장치 연결의 높은 안정성을 위해 제어망은 링크 장애 발생 시에도 장치의 계속된 연결을 지원할 수 있어야 한다. 본 논문은 철도 차량용 이더넷 기반 제어망에서 링 토폴로지 적용 시 링크 장애가 발생하면 노드 위치에 따라 급격한 전송 딜레이 변화가 발생함을 보인다. 이 문제를 해결하기 위해, 장치별 딜레이 증가를 감안한 포워딩 우선순위를 설정하는 기법과 백업용 버스 망을 두어 장애 발생 시 일부 노드를 선택적으로 버스 망으로 스위칭 시키는 토폴로지 스위칭 기법을 제안한다. 시뮬레이션을 통한 성능 평가에서, 포워딩 우선순위를 설정하는 기법은 큐잉 딜레이의 보상만 가능하여 제한된 효과를 얻는 반면, 토폴로지 스위칭 기법은 링크 수에 따른 딜레이 증가 측면에 대해 충분한 성능 개선이 있음을 보인다. 또한, 토폴로지 스위칭 기법의 딜레이 성능과 패킷 손실율은 버스 망에 연결된 노드 수에 영향을 받는 것을 보인다.

Keywords

References

  1. Controller area network (CAN)-Part 6: High-speed medium access unit with selective wake-up functionality, ISO 11898-6:2013, 2013.
  2. Electronic railway equipment-Train communication network (TCN), IEC 61375, 2012.
  3. J. Jimenez et al., "A top-down design for the train communication network," IEEE International Conference on Industrial Technology, 2003.
  4. C. Rodriguez-Morcillo et al., "Broadband system to increase bitrate in train communication networks," Computer Standards & Interfaces, Vol. 31, no. 2, pp. 261-271, 2009. https://doi.org/10.1016/j.csi.2008.05.007
  5. KUANG Chang-hong et al., "ARCNET train communication network modeling and simulation based on OPNET," Railway Computer Application, Vol. 2008-05, 2008.
  6. Hwanwoong Hwang, Jungtai Kim, Kang-Won Lee, and Ji-Hoon Yun, "Analysis of Network Topology for Distributed Control System in Railroad Trains," Journal of the Institute of Electronics and Information Engineers, Vol. 52, no. 10, pp. 1741-1749, 2015.
  7. Hyung-Taek Lim, Lars Volker, and Daniel Herrscher, "Challenges in a future IP/Ethernet-based in-car network for real-time applications," in Proceedings of the 48th Design Automation Conference, pp. 7-12, 2011.
  8. Mina Hwang et al., "Performance Evaluation of Low Complexity and Low Cost Automotive Real-Time Ethernet Network," IEIE Conference, Vol. 36, no. 1, pp. 428-431, 2013.
  9. Sung Woo Lee, "Performance Analysis and Experiment of Ethernet Based Real-time Control Network Architecture," Journal of Energy Engineering, Vol. 14, no. 2, pp. 112-116, 2005.
  10. Stefan Kunze, Rainer Poschl, and Andreas Grzemba, "Comparison of Energy Optimization Methods for Automotive Ethernet Using Idealized Analytical Models," Springer Lecture Notes in Mobility, pp. 187-198, 2015.
  11. The Network Simulator - ns-2, [Online]. Available: http://www.isi.edu/nsnam/ns/.