DOI QR코드

DOI QR Code

온도에 따른 사질토의 다짐 특성

Temperature Effect on the Compaction Characteristic of Cohesionless Soil

  • Lee, Kicheol (Dept. of Civil & Environment Engineering, Incheon National Univ.) ;
  • Ji, Subin (Dept. of Civil & Environment Engineering, Incheon National Univ.) ;
  • Kim, Hobi (Fugro Consultants Inc.) ;
  • Kim, Dongwook (Dept. of Civil & Environment Engineering, Incheon National Univ.)
  • 투고 : 2016.02.16
  • 심사 : 2016.02.22
  • 발행 : 2016.02.29

초록

흙의 다짐 특성에 영향을 주는 주요인자 중 하나인 온도는 지역과 계절에 따라 다양하게 변화하는 특성을 가진다. 최근 동토지방에서 많은 토목공사가 시행되고 있지만, 온도와 관련된 흙의 다짐기준 및 지침을 정량화할 수 있는 문헌은 미비한 실정이다. 따라서 본 연구는 온도에 따른 흙의 다짐특성을 시험을 통해 평가하고자 하였다. 시험을 위해 러시아 시베리아, 캐나다 앨버타 주 오일 샌드 지역 등에서 자주 쓰이는 성토재료인 모래의 온도별 다짐특성을 나타낼 수 있는 주문진 모래를 사용하였으며, 표준다짐시험을 흙의 다양한 온도조건($-10^{\circ}C$에서 $17^{\circ}C$)에서 수행하였다. 시험 결과 영상 온도에서는 다짐 시 벌킹 효과로 인해 흙 공시체의 부피 팽창이 발생하였으며, 그 범위는 0%~6%이였다. $0^{\circ}C$에서 $17^{\circ}C$까지 온도가 증가하면서 최대 부피(최소 건조단위중량)에 해당하는 함수비는 감소하였고, 최소 부피(최대 건조단위중량)에 해당하는 함수비는 온도가 증가함에 따라 약간 증가하였다. 영하 온도의 경우 함수비가 추가됨에 따라 건조단위중량은 지속적으로 감소하였다. 영하 온도에서는 벌킹이 발생하지 않았으며 물의 단위부피보다 얼음의 단위부피가 더 크기 때문에 흙 공시체의 부피가 증가하였다.

Among several factors controlling soil compaction, temperature is the factor that varies with region and season. Although earthwork is performed in many projects in the cold regions of the earth, studies on quantifying soil compaction associated with temperature are limited. This experimental study investigates the temperature effect on the soil compaction of cohesionless soil. Jumunjin sand was selected for the tests to represent cohesionless clean sand, which is widely used as an engineering fill at petrochemical projects such as northern Alberta of Canada and Russia. The laboratory test program consists of performing a series of standard proctor tests varying temperature of soil samples ranging from $-10^{\circ}C$ to $17^{\circ}C$. Test results indicate that soil specimen volume expansion occurred from bulking and its range was 0% to 6% with zero above temperature. For increasing temperature from $0^{\circ}C$ to $17^{\circ}C$, water content corresponding to maximum volume (minimum dry unit weight) was decreased and water content corresponding to minimum volume (maximum dry unit weight observed after reaching minimum dry unit weight) was slightly increased with increasing temperature. In zero below temperature, dry unit weight gradually decreased with increasing water content. In this case, no bulking effect was found and soil specimen volume increased due to the higher unit volume of ice.

키워드

참고문헌

  1. Alkire, B. D., Haas, W. M., and Kaderabek, T. J. (1975), "Improving Low Temperature Compaction of a Granular Soil", Canadian Geotechnical Journal, Vol.12, No.4, pp.527-530. https://doi.org/10.1139/t75-059
  2. Anderson, D. M. and Morgenstern, N. R. (1973), Physics, Chemistry and mechanics of frozen ground: a review, Proceedings of the 2nd International Conference on Permafrost, Yakutsk, U.S.S.R., North American Contribution, pp.257-288.
  3. ASTM D698 (2012), "Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12400ftlbf/ft3 (600kN-m/m3))", ASTM International, West Conshohocken, PA.
  4. ASTM D891 (2009), "Standard Test Methods for Specific Gravity, Apparent, of Liquid Industrial Chemicals", ASTM International, West Conshohocken, PA.
  5. ASTM D6913 (2009), "Standard Test Methods for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis", ASTM International, West Conshohocken, PA.
  6. Foster, C. R. (1962), "Field problems: compaction", Foundation Engineering, G.A. Leonards (ed.), McGraw-Hill, New York, pp. 1000-1024.
  7. Heiner, A. (1972), "Strength and Compaction Properties of Frozen Soil", National swedish institute for building research, Sweden, Doc.11, pp.71.
  8. Highter, W. H. (1969), Report : Temperature effects on the compaction and strength behavior of a clay, Purdue University and Indiana State Highway Commission.
  9. Hwang, B. S., Chae, D. H., Kim, Y. S., and Cho, W. J. (2015), "An Experimental Study on the Effectiveness of Soil Compaction at Below-Freezing Temperatures", Korean Geo-Environmental Society, Vol.16, No.1, pp.37-43 (in Korean).
  10. Johnson, A. W. and Sallberg, J. R. (1962), "Factors Influencing Compaction Test Results", Highway Research Board Bulletin, Vol.319, pp.148.
  11. Kim, H. (2014), Dynamic analysis of dynamic cone penetration test for subgrade compaction assessment, Ph.D thesis, Purdue University, West Lafayette, IN.
  12. Low, W. I. and Lyell, A. P. (1967). "Portage Mountain Dam: III. Development of Construction Control", Canadian Geotechnical Journal, Vol.4, No.2, pp.184-217. https://doi.org/10.1139/t67-037
  13. Murari, L. G. (2013), Concrete Technology: Theory and Practice, Tata McGraw-Hill Education.
  14. MOLIT (2013), Standard specification for building construction, MOLIT (Ministry of Land, Infrastructure and Transportation).(in Korean)
  15. Phukan, A. (1985), Frozen ground engineering, Prentice Hall, Inc., New Jersey.
  16. Ting, J. M. (1981), The creep of frozen sand: qualitative and quantitative models, Research Report R81-5, Massachusetts Institute of Technology Dept. of Civil Engineering, pp.88-102.
  17. Hass, W. M., Alkire, B. D., and Kaderabek, T. J. (1978), Increasing the effectiveness of soil compaction at below- freezing temperature, Special Report 78-25, U.S. Army Cold Regions Research and Engineering Laboratory, Directorate of Military Programs Office, Washington, pp.51-52.

피인용 문헌

  1. Evaluation of Compaction and Crushing Characteristics of Frozen and Unfrozen Sands Under Repetitive Compactions vol.22, pp.9, 2018, https://doi.org/10.1007/s12205-018-0540-6