DOI QR코드

DOI QR Code

A Study on Classification of Limonite and Saprolite from Nickel Laterite Ores

뉴칼레도니아산 니켈라테라이트광의 분급 연구

  • Seo, Joobeom (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Kee-seok (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Bae, In-kook (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Jae-young (Research Institute of Industrial Science & Technology) ;
  • Kim, Hyung-seok (Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 서주범 (한국지질자원연구원 광물자원연구본부) ;
  • 김기석 (한국지질자원연구원 광물자원연구본부) ;
  • 배인국 (한국지질자원연구원 광물자원연구본부) ;
  • 이재영 (포항산업과학기술연구원 POSNEP연구단) ;
  • 김형석 (한국지질자원연구원 광물자원연구본부)
  • Received : 2015.09.10
  • Accepted : 2016.01.08
  • Published : 2016.02.29

Abstract

Nickel laterite ore is classified into two principal ore types: saprolite (silicate ore) and limonite (oxide ore). Saprolite-type ore characterized by high magnesia and silica contents is treated by pyrometallurgy process. On the other hand, limonite-type ore is subjected to hydrometallurgy process to produce nickel products. Hydrometallurgy process requires that a raw material to meet the demands that Si+Mg contents lower than 10% and Fe content over than 40%. It is therefore required that separation of saprilite-type ore to use nickel laterite ore as a raw material for hydrometallurgy process. In this study, separation of sparolite-type ore and limonite-type ore from nickel laterite ore from New Caledonia has been tried by dry classification. The results show that -5 mm size fraction and +5 mm size fraction of the nickel laterite ore contains mainly limonite-type ore and saprolite-type ore, respectively. To understand the moisture content of the raw ore on the dry classification, nickel laterite ore with different moisture contents of 23.0% and 9.1% were subjected to the dry classification. The results show that drying of the ore makes the separation more efficient as the amount of the fine product, that can be subjected to hydrometallurgy process without further separation or drying operations, was increased.

니켈 산화광인 라테라이트광은 건식제련 원료인 사프로라이트광과 습식제련 원료인 리모나이트광으로 구성되어 있다. 사프로라이트광이 혼재된 리모나이트광을 습식제련용으로 사용할 경우 무기산 소모량이 증가할 뿐만 아니라 슬러지 발생량이 증가하여 공정비용을 증가시키는 단점이 발생한다. 이러한 이유로 니켈 리모나이트광은 Si+Mg함량 10% 이하, Fe 함량 40% 이상이어야 습식제련 원료로 사용하기 적합하다. 본 연구에서는 뉴칼레도니아산 니켈 라테라이트광을 대상으로 습식제련 원료인 리모나이트광을 분리선별하는 연구를 수행하였다. 뉴칼레도니아산 니켈라테라이트광의 입도에 따른 광물성분 및 화학성분 변화를 규명하여 분급에 의한 사프로라이트 및 리모나이트의 광물간 분리선별 가능성을 확인하였다. 뉴칼레도니아산 니켈 라테라이트 원광(함수율 23.0%) 및 니켈 라테라이트 건조광(함수율 9.1%)을 핀밀을 이용 해쇄한 후 건식분급한 결과, 니켈 라테라이트광을 함수율 9% 수준으로 건조할 경우 분급효율이 높아지는 것을 확인하였다.

Keywords

References

  1. Kim Wantae, Kim Sangbae, 2009 : Current status of laterite ore processing technology, The mineralogical society of Korea, Minerals and Industry ISSN: 1299-7496, 22(2), pp.71-83.
  2. Lu, J., Liu, S., Shangguan J., Du. W., Pan, F., and Yang, S. 2013 : The effect of sodium sulphate on the hydrogen reduction process of nickel laterite ore, Miner. Eng., 49, pp.154-164. https://doi.org/10.1016/j.mineng.2013.05.023
  3. Harris, C.T., Peacey, J.G., and Pickles, C.A., 2011 : Selective sulphidation of a nickelferous lateritic ore, Miner. Eng., 24, pp.651-660. https://doi.org/10.1016/j.mineng.2010.10.008
  4. Zhu, D.Q., Cui, Y., Vining, K., Hapugoda, S., Douglas, J. Pan, J., and Zheng, G. L., 2012, Upgrading low nickel content laterite ores using selective reduction followed by magnetic separation, Int. J. Miner. Process, 106-109, pp.1-7. https://doi.org/10.1016/j.minpro.2012.01.003
  5. Norgate, T., and Jahanshahi, S., 2011 : Assessing the energy and greenhourse gas foortprints of nickel laterite processing, Miner. Eng., 23, pp.698-707.
  6. Cho, Hyen Goo, Kim, Soon-Oh, and Kim, Sang Bae, 2011 : Mineralogy of Garnierite from New Caledonian Ni Lateritic Ore, J. Miner. Soc. Korea, 24(4), pp.253-263. https://doi.org/10.9727/jmsk.2011.24.4.253
  7. Wells, M.A., Ramanaidou, E.R., Verrall, M., and Tessarolo, C., 2009 : Mineralogy and crystal chemistry of "garnierites" in the Goro lateritic nickel deposit, New Caledonia, Eur. J. Mineral., 21, pp.467-483, https://doi.org/10.1127/0935-1221/2009/0021-1910
  8. Tauler, E., Proenza, J.A., Gali, S., Lewis J.F., Labrador, M., Garcia-Romero, E., Suarez, M., Longo, F., and Bloise, D.G., 2009 : Ni-sepiolite-falcondoite in garnierite mineralization from the Falcono Ni-laterite deposit, Dominican Republic, Clay Minerals, 44, pp.435-454. https://doi.org/10.1180/claymin.2009.044.4.435
  9. Mudd, G., 2010 : Global trends and issues in nickel mining: sulfides versus laterites, Ore Geol. Rev., 38, pp9-26, https://doi.org/10.1016/j.oregeorev.2010.05.003
  10. Eckleman, M., 2010 : Facility-level energy and greenhouse gas life-cycle assessment of the global nickel industry, Resour. Conserv. Recycl., 54, pp.256-266. https://doi.org/10.1016/j.resconrec.2009.08.008
  11. Kim, K., Seo, J., Bae, I., Bae, K., You, K., Lee, J., and Kim, H., 2014 : A Study on separation of limonite and saprolite from nickel laterite ores, J. of Korean Inst. of Resources Recycling, 23(6), pp.12-21. https://doi.org/10.7844/KIRR.2014.23.6.12

Cited by

  1. Extraction of Nickel from Magnesia-Nickel Silicate Ore vol.7, pp.2, 2016, https://doi.org/10.1007/s40831-021-00364-0