DOI QR코드

DOI QR Code

Characterization of Traditional Korean Unifloral Honey Based on the Mono-, Di-, and Trisaccharides

한국산 벌꿀의 밀원별 단당, 이당 및 삼당류의 정량 특성

  • Jang, Eun-Sook (Food Analysis Division, Institute of Health and Environment in Daegu Metropolitan) ;
  • Kim, In-Suk (Food Analysis Division, Institute of Health and Environment in Daegu Metropolitan) ;
  • Lee, Eun-jin (Food Analysis Division, Institute of Health and Environment in Daegu Metropolitan) ;
  • Seo, Hyun-Sun (Food Analysis Division, Institute of Health and Environment in Daegu Metropolitan) ;
  • Lee, Hye-joung (Food Analysis Division, Institute of Health and Environment in Daegu Metropolitan) ;
  • Kim, Eun (Food Analysis Division, Institute of Health and Environment in Daegu Metropolitan) ;
  • Kim, Kyung-Tae (Food Analysis Division, Institute of Health and Environment in Daegu Metropolitan) ;
  • Kim, Jong-Bae (Food Analysis Division, Institute of Health and Environment in Daegu Metropolitan)
  • 장은숙 (대구광역시 보건환경연구원 식품분석과) ;
  • 김인숙 (대구광역시 보건환경연구원 식품분석과) ;
  • 이은진 (대구광역시 보건환경연구원 식품분석과) ;
  • 서현선 (대구광역시 보건환경연구원 식품분석과) ;
  • 이혜정 (대구광역시 보건환경연구원 식품분석과) ;
  • 김은 (대구광역시 보건환경연구원 식품분석과) ;
  • 김경태 (대구광역시 보건환경연구원 식품분석과) ;
  • 김종배 (대구광역시 보건환경연구원 식품분석과)
  • Received : 2015.12.02
  • Accepted : 2016.01.25
  • Published : 2016.02.29

Abstract

Sugar profiles of 45 Korean honey samples (15 acacia, 15 multi-floral, 10 chestnut, and 5 artificial honey samples), which are commercially available in the Korean markets, were analyzed using gas chromatography/mass spectrometry (GC/MS) through TMS-oxime and TMS-methoxime derivatization. The average invert sugar contents in acacia, multi-floral, chestnut, and artificial honey samples were $71.2{\pm}1.05$, $68.7{\pm}3.26$, $63.2{\pm}1.85$, and $68.0{\pm}2.10%$, respectively. Fourteen disaccharides were detected from the samples, and the average content of major disaccharides was higher in order of turanose, maltulose, maltose, trehalulose, kojibiose, isomaltose, and nigerose. The average content of total disaccharides was highest in chestnut and lowest in acacia. Seven trisaccharides were detected from the samples, and the average content of trisaccharides was the highest in artificial honeys, which had high erlose content. The total content of disaccharides and trisaccharides was highest ($16.0{\pm}2.03%$) in chestnut honey and lowest ($9.70{\pm}1.75%$) in acacia honey.

한국에서 생산 및 유통되고 있는 서로 다른 밀원의 45개 벌꿀(아카시아꿀 15, 잡화꿀 15, 밤꿀 10, 사양꿀 5)을 대상으로, 단당류, 이당류 그리고 삼당류를 TMSO 및 TMSMe 유도체화를 만들어 GC/MS를 이용하여 분석하였다. 아카시아꿀, 잡화꿀, 밤꿀과 사양꿀에서 전화당의 총 함량은 각각 $69.3{\pm}2.86$, $66.4{\pm}3.28$, $62.4{\pm}2.24$$68.0{\pm}2.32%$였고, F/G 비는 1.61, 1.46, 1.90와 1.13이었다. 벌꿀시료에서 이당류는 약14종을 분리하였으며, 이전의 연구에서 보고된 cellobisoe와 melebiose는 모든 벌꿀시료에서 검출되지 않았다. 주요 이당류로는 turanose, maltulose, maltose, trehalulose, kojibiose, isomaltose, nigerose였으며, 꽃꿀에서 미량으로 존재하는 이당류로는 sucrose, ${\alpha}$-trehalose, ${\alpha},{\beta}$-trehalose, laminaribiose, palatinose, gentibiose 등으로 나타났다. 이당류의 총 함량은 maltulose, turanose, trehalulose의 함량이 높은 밤꿀에서 $14.2{\pm}2.43%$로 가장 높았으며, 아카시아 꿀에서 상대적으로 낮은 $8.79{\pm}1.76%$였다. 밀원별 벌꿀에서 7종류의 삼당류를 정량분석하였으며, 그 중 erlose는 사양꿀에서 $4.59{\pm}1.28%$로 가장 높았으며, 꽃꿀에서는 0.79-1.75%의 함량분포를 나타내었다.. 이당류와 삼당류의 총 함량은 maltulose와 turanose, trehalulose, isomaltose 등의 함량이 높게 나타난 밤꿀에서 $16.0{\pm}2.03%$로 가장 높았으며, 아카시아, 잡화꿀과 사양꿀에서는 각각 $9.70{\pm}1.75%$, $11.5{\pm}3.07%$$15.1{\pm}3.19%$의 평균함량 분포를 보였다.

Keywords

References

  1. MFDS. Korean Food Code. Ministry of Food and Drug Safety. Cheongju, Korea. (2011)
  2. Codex Alimentarius. Codex Standard for Honey, CODEX STAN 12. Roma, Italy. pp. 1-8 (2001)
  3. Kek SP, Chin NL, Yusof YA, Tan SW, Chua LS. Total phenolic contents and colour intensity of malaysian honeys from the Apis spp. and Trigona spp. Bees. Agr. Agr. Sci. Proced. 2: 150-155 (2014)
  4. da Silva IAA, da Silva TMS, Camara CA, Queiroz N, Magnani M, de Novais JS, Soledade LEB, de Oliveira Lima E, de Souza AL, de Souza AG. Phenolic profile, antioxidant activity and palynological analysis of stingless bee honey from Amazonas, Northern Brazil. Food Chem. 141: 3552-3558 (2013) https://doi.org/10.1016/j.foodchem.2013.06.072
  5. Surez-Luque S, Mato I, Huidobro JF, Simal-Lozano J, Sancho MT. Rapid determination of minority organic acids in honey by high-performance liquid chromatography. J. Chromatogr. A. 955: 207-214 (2002) https://doi.org/10.1016/S0021-9673(02)00248-0
  6. Alqarni AS, Owayss AA, Mahmoud AA, Hannan MA. Mineral content and physical properties of local and imported honeys in Saudi Arabia. J. Saudi Chem. Soc. 18: 618-625 (2014) https://doi.org/10.1016/j.jscs.2012.11.009
  7. Horvth K, Molmr-Perl I. Simultaneous quantitation of mono-, diand trisaccharides by GC-MS of their TMS ether oxime derivatives: II. In honey. Chromatographia 45: 328-335 (1997) https://doi.org/10.1007/BF02505579
  8. Grmez Brez JA, Garcia-Villanova RJ, Elvira Garcia S, Gonzlez Params AM. Optimization of the capillary gas chromatographic analysis of mono-and oligosaccharides in honeys. Chromatographia 50: 461-469 (1999) https://doi.org/10.1007/BF02490743
  9. Sanz ML, Sanz J, Matute-Castro I. Gas chromatographic-mass spectrometric method for the qualitative and quantitative determination of disaccharides and trisaccharides in honey. J. Chromatogr. A. 1059: 143-148 (2004) https://doi.org/10.1016/j.chroma.2004.09.095
  10. Ruiz-Matute AI, B개ki M, Soria AC, Snaz ML, Martinez-Castro I. Gas chromatographic-mass spectrometric characterisation of triand tetrasaccharides in honey. Food Chem. 120: 637-642 (2010) https://doi.org/10.1016/j.foodchem.2009.10.050
  11. de la Fuente E, Ruiz-Matute AI, Valencia-Barrera RM, Sanz J, Martinez Castro I. Carbohydrate composition of Spanish unifloral honeys. Food Chem. 129: 1483-1489 (2011) https://doi.org/10.1016/j.foodchem.2011.05.121
  12. Kim JG, Kim MK, Lee SH. Study on the content of oligosaccharides in honey by honey plants. J. Apic. 8: 165-169 (1993)
  13. Kim JY, Song HY, Moon JA, Shin MH, Baek SH. Quality properties of honey in Korean commercial markets. Korean J. Food Sci. Technol. 46: 432-437 (2014) https://doi.org/10.9721/KJFST.2014.46.4.432
  14. Paik WK, Kwak AK, Lee ML, Sim HS. Studies on the chemical characteristics of jujube (Zizyphus jujube var. inermis) and snowbell (Styrax japonica) honey produced in Korea. J. Apic. 29: 125-135 (2014)
  15. Kim ES, Rhee CO. Analysis and quantitation of di-and trisaccharides in native-bee honeys using capillary gas chromatography. Korean J. Food Sci. Technol. 29: 605-611 (1995)
  16. Kim JB, Jang ES, Kim IS, Lee HJ, Lee HJ, Seo HS, Park NP. An improved analytical method for the determination of qualitative and quantitative characteristics of di-and trisaccharides in honey using by GC and GC/MS. Korean J. Food Sci. Technol. 47: 27-36 (2015) https://doi.org/10.9721/KJFST.2015.47.1.27
  17. Cho YJ, Kim JY, Chang MI, Kang KM, Park YC, Kang IH, Do JA, Kwon KS, Oh JH. A study on stable isotope ratio of circulated honey in Korea. Korean J. Food Sci. Technol. 44: 401-410 (2012) https://doi.org/10.9721/KJFST.2012.44.4.401
  18. Escuredo O, Dobre I, Fernndez-Gonzlez M, Carmen Seijo M. Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chem. 149: 84-90 (2014) https://doi.org/10.1016/j.foodchem.2013.10.097
  19. Ruiz-Matute AI, Sanz ML, Martinez-Castro I. Use of gas chromatography-mass spectrometry for identification of a new disaccharide in honey. J. Chromatogr. A. 1157: 480-483 (2007) https://doi.org/10.1016/j.chroma.2007.05.056
  20. de la Fuente E, Sanz ML, Martnez-Castro I, Sanz J. Development of a robust method for the quantitative determination of disaccharides in honey by gas chromatography. J. Chromatogr. A. 1135: 212-218 (2006) https://doi.org/10.1016/j.chroma.2006.09.035
  21. Kim BN, Kim TJ, Cheigh HS. Minerals, HMF and vitamins of honey harvested in Kangwon area. J. Korean Soc. Food Sci. Nutr. 23: 675-679 (1994)
  22. Echigo T, Takenaka T. Changes in erlose contents by honeybee invertase. Agr. Biol. Chem. Tokyo 37: A14-A14 (1973)
  23. Swallow KW, Low NH. Analysis and quantitation of the carbohydrates in honey using high performance liquid chromatography. J. Agr. Food Chem. 38: 1828-1832 (1990) https://doi.org/10.1021/jf00099a009