DOI QR코드

DOI QR Code

Identification of Histone Deacetylase 2 as a Functional Gene for Skeletal Muscle Development in Chickens

  • Shahjahan, Md. (Institute of Animal Sciences, Chinese Academy of Agricultural Sciences) ;
  • Liu, Ranran (State Key Laboratory of Animal Nutrition) ;
  • Zhao, Guiping (State Key Laboratory of Animal Nutrition) ;
  • Wang, Fangjie (Institute of Animal Sciences, Chinese Academy of Agricultural Sciences) ;
  • Zheng, Maiqing (State Key Laboratory of Animal Nutrition) ;
  • Zhang, Jingjing (State Key Laboratory of Animal Nutrition) ;
  • Song, Jiao (State Key Laboratory of Animal Nutrition) ;
  • Wen, Jie (State Key Laboratory of Animal Nutrition)
  • Received : 2015.03.21
  • Accepted : 2015.08.05
  • Published : 2016.04.01

Abstract

A previous genome-wide association study (GWAS) exposed histone deacetylase 2 (HDAC2) as a possible candidate gene for breast muscle weight in chickens. The present research has examined the possible role of HDAC2 in skeletal muscle development in chickens. Gene expression was measured by quantitative polymerase chain reaction in breast and thigh muscles during both embryonic (four ages) and post-hatch (five ages) development and in cultures of primary myoblasts during both proliferation and differentiation. The expression of HDAC2 increased significantly across embryonic days (ED) in breast (ED 14, 16, 18, and 21) and thigh (ED 14 and 18, and ED 14 and 21) muscles suggesting that it possibly plays a role in myoblast hyperplasia in both breast and thigh muscles. Transcript abundance of HDAC2 identified significantly higher in fast growing muscle than slow growing in chickens at d 90 of age. Expression of HDAC2 during myoblast proliferation in vitro declined between 24 h and 48 h when expression of the marker gene paired box 7 (PAX7) increased and cell numbers increased throughout 72 h of culture. During induced differentiation of myoblasts to myotubes, the abundance of HDAC2 and the marker gene myogenic differentiation 1 (MYOD1), both increased significantly. Taken together, it is suggested that HDAC2 is most likely involved in a suppressive fashion in myoblast proliferation and may play a positive role in myoblast differentiation. The present results confirm the suggestion that HDAC2 is a functional gene for pre-hatch and post-hatch (fast growing muscle) development of chicken skeletal muscle.

Keywords

References

  1. Bai, S., K. Ghoshal, J. Datta, S. Majumder, S. O. Yoon, and S. T. Jacob. 2005. DNA methyltransferase 3b regulates nerve growth factor-induced differentiation of PC12 cells by recruiting histone deacetylase 2. Mol. Cell. Biol. 25:751-766. https://doi.org/10.1128/MCB.25.2.751-766.2005
  2. Bentzinger, C. F., Y. X. Wang, and M. A. Rudnicki. 2012. Building muscle: Molecular regulation of myogenesis. Cold Spring Harb. Perspect. Biol. 4:a008342.
  3. Brunmeir, R., S. Lagger, and C. Seiser. 2009. Histone deacetylase 1 and 2-controlled embryonic development and cell differentiation. Int. J. Dev. Biol. 53:275-289. https://doi.org/10.1387/ijdb.082649rb
  4. Galletti, M., S. Cantoni, F. Zambelli, S. Valente, M. Palazzini, A. Manes, G. Pasquinelli, A. Mai, N. Galie, and C. Ventura. 2014. Dissecting histone deacetylase role in pulmonary arterial smooth muscle cell proliferation and migration. Biochem. Pharmacol. 91:181-190. https://doi.org/10.1016/j.bcp.2014.07.011
  5. Halevy, O., Y. Piestun, M. Z. Allouh, B. W. Rosser, Y. Rinkevich, R. Reshef, I. Rozenboim, M. Wleklinski-Lee, and Z. Yablonka-Reuveni. 2004. Pattern of Pax7 expression during myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal. Dev. Dyn. 231:489-502. https://doi.org/10.1002/dvdy.20151
  6. Jacob, C., C. N. Christen, J. A. Pereira, C. Somandin, A. Baggiolini, P. Lotscher, M. o zcelik, N. Tricaud, D. Meijer, T. Yamaguchi, P. Matthias, and U. Suter. 2011. HDAC1 and HDAC2 control the transcriptional program of myelination and the survival of Schwann cells. Nat. Neurosci. 14:429-436. https://doi.org/10.1038/nn.2762
  7. Lamey, T. M., A. Koenders, and M. Ziman. 2004. Pax genes in myogenesis: Alternate transcripts add complexity. Histol. Histopathol. 19:1289-1300.
  8. LeBoeuf, M., A. Terrell, S. Trivedi, S. Sinha, J. A. Epstein, E. N. Olson, E. E. Morrisey, and S. E. Millar. 2010. Hdac1 and Hdac2 act redundantly to control p63 and p53 functions in epidermal progenitor cells. Dev. Cell 19:807-818. https://doi.org/10.1016/j.devcel.2010.10.015
  9. Lin, W., S. I. Hashimoto, H. Seo, T. Shibata, and K. Ohta. 2008. Modulation of immunoglobulin gene conversion frequency and distribution by the histone deacetylase HDAC2 in chicken DT40. Genes Cells. 13:255-268. https://doi.org/10.1111/j.1365-2443.2008.01166.x
  10. Liu, R., Y. Sun, G. Zhao, F. Wang, D. Wu, M. Zheng, J. Chen, L. Zhang, Y. Hu, and J. Wen. 2013. Genome-wide association study identifies loci and candidate genes for body composition and meat quality traits in Beijing-You chickens. PLoS One 8:e61172. https://doi.org/10.1371/journal.pone.0061172
  11. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-{\Delta}{\Delta}C}T$ method. Methods. 25:402-408. https://doi.org/10.1006/meth.2001.1262
  12. McKinsey, T. A., C. L. Zhang, and E. N. Olson. 2001. Control of muscle development by dueling HATs and HDACs. Curr. Opin. Genet. Dev. 11:497-504. https://doi.org/10.1016/S0959-437X(00)00224-0
  13. Montgomery, R. L., C. A. Davis, M. J. Potthoff, M. Haberland, J. Fielitz, X. Qi, J. A. Hill, J. A. Richardson, and E. N. Olson. 2007. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev. 21:1790-1802. https://doi.org/10.1101/gad.1563807
  14. Moresi, V., M. Carrer, C. E. Grueter, O. F. Rifki, J. M. Shelton, J. A. Richardson, R. Bassel-Duby, and E. N. Olson. 2012. Histone deacetylases 1 and 2 regulate autophagy flux and skeletal muscle homeostasis in mice. Proc. Nat. Acad. Sci. 109:1649-1654. https://doi.org/10.1073/pnas.1121159109
  15. Nguyen, T. H., M. J. Bertrand, C. Sterpin, Y. Achouri, and O. R. De Backer. 2010. Maged1, a new regulator of skeletal myogenic differentiation and muscle regeneration. BMC Cell Biol. 11:57. https://doi.org/10.1186/1471-2121-11-57
  16. Niegisch, G., J. Knievel, A. Koch, C. Hader, U. Fischer, P. Albers, and W. A. Schulz. 2013. Changes in histone deacetylase (HDAC) expression patterns and activity of HDAC inhibitors in urothelial cancers. Urol. Oncol.-Semin. Orig. Investig. 31:1770-1779. https://doi.org/10.1016/j.urolonc.2012.06.015
  17. Nural-Guvener, H. F., L. Zakharova, J. Nimlos, S. Popovic, D. Mastroeni, and M. A. Gaballa. 2014. HDAC class I inhibitor, Mocetinostat, reverses cardiac fibrosis in heart failure and diminishes CD90+ cardiac myofibroblast activation. Fibrogenesis Tissue Repair7:10. https://doi.org/10.1186/1755-1536-7-10
  18. Parbin, S., S. Kar, A. Shilpi, D. Sengupta, M. Deb, S. K. Rath, and S. K. Patra. 2014. Histone deacetylases a saga of perturbed acetylation homeostasis in cancer. J. Histochem. Cytochem. 62:11-33. https://doi.org/10.1369/0022155413506582
  19. Rehfeldt, C., M. F. W. Te Pas, K. Wimmers, J. M. Brameld, P. M. Nissen, C. Berri, L. M. P. Valente, D. M. Power, B. Picard, N. C. Stickland, and N. Oksbjerg. 2011. Advances in research on the prenatal development of skeletal muscle in animals in relation to the quality of muscle-based food. 1. Regulation of myogenesis and environmental impact. Animal 5:703-717. https://doi.org/10.1017/S1751731110002089
  20. Segre, C. V. and S. Chiocca. 2011. Regulating the regulators: The post-translational code of class I HDAC1 and HDAC2. Biomed. Res. Int. 2011, Article ID:690848.
  21. Tang, Y., J. M. Boucher, and L. Liaw. 2012. Histone deacetylase activity selectively regulates notch-mediated smooth muscle differentiation in human vascular cells. J. Am. Heart Assoc. 1:e000901.
  22. Taunton, J., C. A. Hassig, and S. L. Schreiber. 1996. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408-411. https://doi.org/10.1126/science.272.5260.408
  23. Tou, L., Q. Liu, and R. A. Shivdasani. 2004. Regulation of mammalian epithelial differentiation and intestine development by class I histone deacetylases. Mol. Cell. Biol. 24:3132-3139. https://doi.org/10.1128/MCB.24.8.3132-3139.2004
  24. Trivedi, C. M., W. Zhu, Q. Wang, C. Jia, H. J. Kee, L. Li, S. Hannenhalli, and J. A. Epstein. 2010. Hopx and Hdac2 interact to modulate Gata4 acetylation and embryonic cardiac myocyte proliferation. Dev. Cell. 19:450-459. https://doi.org/10.1016/j.devcel.2010.08.012
  25. Turgeon, N., M. Blais, J. M. Gagne, V. Tardif, F. Boudreau, N. Perreault, and C. Asselin. 2013. HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation. PLoS One 8:e73785. https://doi.org/10.1371/journal.pone.0073785
  26. Velleman, S. G. 2007. Muscle development in the embryo and hatchling. Poult. Sci. 86:1050-1054. https://doi.org/10.1093/ps/86.5.1050
  27. Yang, Q., M. J. Dahl, K. H. Albertine, R. Ramchandran, M. Sun, and J. U. Raj. 2013. Role of histone deacetylases in regulation of phenotype of ovine newborn pulmonary arterial smooth muscle cells. Cell Prolif. 46:654-664. https://doi.org/10.1111/cpr.12076
  28. Ye, F., Y. Chen, T. Hoang, R. L. Montgomery, X. H. Zhao, H. Bu, and Q. R. Lu. 2009. HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the ${\beta}$-catenin-TCF interaction. Nat. Neurosci. 12:829-838. https://doi.org/10.1038/nn.2333
  29. Yoo, J. Y. J., M. Larouche, and D. Goldowitz. 2013. The Expression of HDAC1 and HDAC2 during cerebellar cortical development. Cerebellum 12:534-546. https://doi.org/10.1007/s12311-013-0459-x
  30. Zhu, W. 2010. Mechanisms of Hdac2 Function in the Regulation of Adult Cardiac Hypertrophy and Embryonic Myocyte Proliferation. Ph.D. Thesis, University of Pennsylvania, Philadelphia, PA, USA.

Cited by

  1. Discovery and characterization of functional modules associated with body weight in broilers vol.9, pp.None, 2016, https://doi.org/10.1038/s41598-019-45520-5