DOI QR코드

DOI QR Code

Targeted Editing of Myostatin Gene in Sheep by Transcription Activator-like Effector Nucleases

  • Zhao, Xinxia (College of Animal Science and Technology, Shihezi University) ;
  • Ni, Wei (College of Life Sciences, Shihezi University) ;
  • Chen, Chuangfu (College of Animal Science and Technology, Shihezi University) ;
  • Sai, Wujiafu (College of Animal Science and Technology, Shihezi University) ;
  • Qiao, Jun (College of Animal Science and Technology, Shihezi University) ;
  • Sheng, Jingliang (College of Animal Science and Technology, Shihezi University) ;
  • Zhang, Hui (College of Animal Science and Technology, Shihezi University) ;
  • Li, Guozhong (College of Animal Science and Technology, Shihezi University) ;
  • Wang, Dawei (College of Life Sciences, Shihezi University) ;
  • Hu, Shengwei (College of Life Sciences, Shihezi University)
  • Received : 2015.01.14
  • Accepted : 2015.07.17
  • Published : 2016.03.01

Abstract

Myostatin (MSTN) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Gene knockout of MSTN can result in increasing muscle mass in sheep. The objectives were to investigate whether myostatin gene can be edited in sheep by transcription activator-like effector nucleases (TALENs) in tandem with single-stranded DNA oligonucleotides (ssODNs). We designed a pair of TALENs to target a highly conserved sequence in the coding region of the sheep MSTN gene. The activity of the TALENs was verified by using luciferase single-strand annealing reporter assay in HEK 293T cell line. Co-transfection of TALENs and ssODNs oligonucleotides induced precise gene editing of myostatin gene in sheep primary fibroblasts. MSTN gene-edited cells were successfully used as nuclear donors for generating cloned embryos. TALENs combined with ssDNA oligonucleotides provide a useful approach for precise gene modification in livestock animals.

Keywords

References

  1. Acosta, J., Y. Carpio, Y. Borroto, O. Gonzalez, and M. P. Estrada. 2005. Myostatin gene silenced by RNAi show a zebrafish giant phenotype. J. Biotechnol. 119:324-331. https://doi.org/10.1016/j.jbiotec.2005.04.023
  2. Bedell, V. M., Y. Wang, J. M. Campbell, T. L. Poshusta, C. G. Starker, R. G. Krug II, T. Wengfang, S. G. Penheiter, A. C. Ma, and A. Y. H. Leung et al. 2012. In vivo genome editing using a high-efficiency TALEN system. Nature 491:114-118. https://doi.org/10.1038/nature11537
  3. Boch, J., H. Scholze, S. Schornack, A. Landgraf, S. Hahn, S. Kay, T. Lahaye, A. Nickstadt, and U. Bonas. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509-1512. https://doi.org/10.1126/science.1178811
  4. Cermak, T., E. L. Doyle, M. Christian, L. Wang, Y. Zhang, C. Schmidt, J. A. Baller, N. V. Somia, A. J. Bogdanove, and D. F. Voytas. 2011. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucl. Acids Res. 39:e82. https://doi.org/10.1093/nar/gkr218
  5. Chen, F., S. M. Pruett-Miller, Y. Huang, M. Gjoka, K. Duda, J. Taunton, T. N. Collingwood, M. Frodin, and G. D. Davis. 2011. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat. Methods 8:753-755. https://doi.org/10.1038/nmeth.1653
  6. Clop, A., F. Marcq, H. Takeda, D. Pirottin, X. Tordoir, B. Bibe, J. Bouix, F. Caiment, J.-M. Elsen, and F. Eychenne et al. 2006. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 38:813-818. https://doi.org/10.1038/ng1810
  7. Davies, B., G. Davies, C. Preece, R. Puliyadi, D. Szumska, and S. Bhattacharya. 2013. Site specific mutation of the Zic2 locus by microinjection of TALEN mRNA in mouse CD1, C3H and C57BL/6J oocytes. PloS one 8:e60216. https://doi.org/10.1371/journal.pone.0060216
  8. Guschin, D. Y., A. J. Waite, G. E. Katibah, J. C. Miller, M. C. Holmes, and E. J. Rebar. 2010. A rapid and general assay for monitoring endogenous gene modification. Engineered Zinc Finger Proteins (Eds. J. P. Mackay and D. J. Segal). Humana Press, Richmond, CA, USA. 247-256.
  9. Hu, S., C. Chen, J. Sheng, Y. Sun, X. Cao, and J. Qiao. 2010. Enhanced muscle growth by plasmid-mediated delivery of myostatin propeptide. J. Biomed. Biotechnol.Article ID 862591.
  10. Hu, S., W. Ni, W. Sai, H. Zi, J. Qiao, P. Wang, J. Sheng, and C. Chen. 2013. Knockdown of myostatin expression by RNAi enhances muscle growth in transgenic sheep. PloS one 8:e58521. https://doi.org/10.1371/journal.pone.0058521
  11. Huang, P., A. Xiao, M. Zhou, Z. Zhu, S. Lin, and B. Zhang. 2011. Heritable gene targeting in zebrafish using customized TALENs. Nat. Biotechnol. 29:699-700. https://doi.org/10.1038/nbt.1939
  12. Jao, L. E., S. R. Wente, and W. Chen. 2013. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl. Acad. Sci. USA. 110:13904-13909. https://doi.org/10.1073/pnas.1308335110
  13. Kambadur, R., M. Sharma, T. P. Smith, and J. J. Bass. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 7:910-916. https://doi.org/10.1101/gr.7.9.910
  14. Li, W., F. Teng, T. Li, and Q. Zhou. 2013. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat. Biotechnol. 31:684-686. https://doi.org/10.1038/nbt.2652
  15. McPherron, A. C., A. M. Lawler, and S. J. Lee. 1997. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83-90. https://doi.org/10.1038/387083a0
  16. Moscou, M. J. and A. J. Bogdanove. 2009. A simple cipher governs DNA recognition by TAL effectors. Science 326:1501. https://doi.org/10.1126/science.1178817
  17. Mosher, D. S., P. Quignon, C. D. Bustamante, N. B. Sutter, C. S. Mellersh, H. G. Parker, and E. A. Ostrander. 2007. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet. 3:e79. https://doi.org/10.1371/journal.pgen.0030079
  18. Ni, W., J. Qiao, S. Hu, X. Zhao, M. Regouski, M. Yang, I. A. Polejaeva, and C. Chen. 2014. Efficient Gene Knockout in Goats Using CRISPR/Cas9 System. PLoS One 9:e106718. https://doi.org/10.1371/journal.pone.0106718
  19. Proudfoot, C., D. F. Carlson, R. Huddart, C. R. Long, J. H. Pryor, T. J. King, S. G. Lillico, A. J. Mileham, D. G. McLaren, C. B. Whitelaw, and S. C. Fahrenkrug. 2015. Genome edited sheep and cattle. Transgenic Res. 24:147-153. https://doi.org/10.1007/s11248-014-9832-x
  20. Reyon, D., S. Q. Tsai, C. Khayter, J. A. Foden, and J. D. Sander, and J. K. Joung. 2012. FLASH assembly of TALENs for highthroughput genome editing. Nat. Biotechnol. 30:460-465. https://doi.org/10.1038/nbt.2170
  21. Schnieke, A., A. J. Kind, W. A. Ritchie, K. Mycock, A. R. Scott, M. Ritchie, I. Wilmut, A. Colman, and K. H. Campbell. 1997. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278:2130-2133. https://doi.org/10.1126/science.278.5346.2130
  22. Wang, Z., J. Li, H. Huang, G. Wang, M. Jiang, S. Yin, C. Sun, H. Zhang, F. Zhuang, and J. J. Xi. 2012. An integrated chip for the high-throughput synthesis of transcription activator-like effectors. Angew. Chem. 124:8633-8636. https://doi.org/10.1002/ange.201203597

Cited by

  1. Use of TALEs and TALEN Technology for Genetic Improvement of Plants vol.35, pp.1, 2017, https://doi.org/10.1007/s11105-016-0997-8
  2. Sheep and Goat Genome Engineering: From Random Transgenesis to the CRISPR Era vol.10, pp.None, 2016, https://doi.org/10.3389/fgene.2019.00750