DOI QR코드

DOI QR Code

Drift Design Method of Steel Moment Frames by using Column-Beam Strength Ratios and Unit-Load Method

기둥-보 휨강도비와 단위하중법을 이용한 철골모멘트골조의 강성설계기법

  • Oh, Byung-Kwan (Department of Architectural Engineering, Yonsei Univ.) ;
  • Park, Hyo-Seon (Department of Architectural Engineering, Yonsei Univ.) ;
  • Choi, Se-Woon (Department of Architecture, Catholic Univ. of Daegu)
  • Received : 2016.10.25
  • Accepted : 2016.11.15
  • Published : 2016.12.30

Abstract

This paper presents the resizing method of columns and beams that considers column-to-beam strength ratios to simultaneously control the initial stiffness and ductility of steel moment frames. The proposed method minimizes the top-floor displacement of a structure while satisfying the constraint conditions with respect to the total structural weight and column-to-beam strength ratios. The design variable considered in this method is the sectional area of structural members, and the sequential quadratic programming(SQP) technique is used to obtain optimal results from the problem formulation. The unit load method is applied to determine the displacement participation factor of each member for the top floor lateral displacement; based on this, the sectional area of each member undergoes a resizing process to minimize the top-floor lateral displacement. Resizing members by using the displacement participation factor of each member leads to increasing the initial stiffness of the structure. Additionally, the proposed method enables the ductility control of a structure by adjusting the column-to-beam strength ratio. The applicability of the proposed optimal drift design method is validated by applying it to the steel moment frame example. As a result, it is confirmed that the initial stiffness and ductility could be controlled by the proposed method without the repetitive structural analysis and the increment of structural weights.

본 논문에서는 철골모멘트골조의 초기 강성과 연성을 동시에 조절하기 위해 기둥-보 휨강도비를 고려한 재분배 기법이 제시된다. 제시되는 기법은 총 구조물량과 기둥-보 휨강도비에 대한 제약조건을 만족시키면서 구조물의 최상층의 변위를 최소화한다. 고려된 설계변수는 구조부재의 단면적을 사용하며, 정식화된 문제로부터 최적의 결과를 얻기 위해 Sequential Quadratic Programming(SQP) 기법을 사용한다. 최상층의 횡변위에 대한 각 부재의 변위기여도를 단위하중법을 통해 구하고, 이를 최상층의 횡변위가 감소하도록 각 부재의 단면을 재설계한다. 각 부재의 변위기여도를 이용하여 부재의 단면을 재설계하는 과정은 구조물의 초기 강성을 향상시키는 효과를 가진다. 동시에, 제시된 기법은 기둥-보 휨강도비를 제약함으로써 구조물의 연성을 조절하도록 한다. 제시된 최적변위설계기법은 철골골조 예제에 적용하여 적용성을 검증한다. 적용한 결과 제시된 기법을 통해 구조물의 초기강성과 연성능력이 조절되는 것을 확인할 수 있었다.

Keywords

References

  1. Al-Ansari, M., Senouci, A. (2011) Drift Optimization of High-rise Buildings in Earthquake Zones, The Struct. Des. Tall & Special Build., 20(2), pp.208-222. https://doi.org/10.1002/tal.530
  2. ANSI/AISC 341-05 (2005) Seismic Provisions for Structural Steel Buildings, Am. Inst. Steel Constr.
  3. Atabay, S., Gulay, F.G. (2009) The Study of the Effect of Changes in Cost of the Materials Used in 3-D Shear-Wall Reinforced Concrete Structures on the Optimum Dimensions, Expert Syst. Appl., 36(3), pp.4331-4337. https://doi.org/10.1016/j.eswa.2008.05.039
  4. Belegundu, A.D., Chandrupatla, T.R. (2011) Optimization Concepts and Applications in Engineering, Cambridge University Press.
  5. Bruneau, M., Uang, C.M., Whittaker, A. (1997) Ductile Design of Steel Structures, McGraw-Hill, USA.
  6. Chan, C.M., Zou, X.K. (2004) Elastic and Inelastic Drift Performance Optimization for Reinforced Concrete Buildings under Earthquake Loads, Earthq. Eng. & Struct. Dyn., 33(8), pp.929-950. https://doi.org/10.1002/eqe.385
  7. Choi, S.W., Park, H.S. (2011) Inter-story Drift Design Method to Improve the Seismic Performance for Steel Moment Frames, J. Comput. Struct. Eng. Inst. Korea, 24, pp.707-714.
  8. Choi, S.W., Kim, Y., Lee, J., Hong, K., Park, H.S. (2013) Minimum Column to Beam Strength Ratios for Beam-Hinge Mechanisms based on Multi-Objective Seismic Design, J. Constr. Steel Res. 88, pp.53-62. https://doi.org/10.1016/j.jcsr.2013.05.004
  9. El Semelawy, M., Nassef, A.O., El Damatty, A.A. (2012) Design of Prestressed Concrete Flat Slab using Modern Heuristic Optimization Techniques, Expert Syst. Appl., 39(5), pp.5758-5766. https://doi.org/10.1016/j.eswa.2011.11.093
  10. FEMA 273 (1997) NEHRP Guidelines for the Seismic Rehabilitation of Buildings, Fed. Emerg. Manag. Agency.
  11. Foutch, D.A., Yun, S.Y. (2002) Modeling of Steel Moment Frames for Seismic Loads, J. Constr. Steel Res., 58(5-8), pp.529-564. https://doi.org/10.1016/S0143-974X(01)00078-5
  12. Gong, Y., Xue, Y., Xu, L., rierson, D.E. (2012) Energy-based Design Optimization of Steel Building Frameworks using Nonlinear Response History Analysis, J. Constr. Steel Res., 68(1), pp.43-50. https://doi.org/10.1016/j.jcsr.2011.07.002
  13. IBC 2015 (2015) International Building Code, International Code Council.
  14. KBC 2016 (2016) Korea Building Code, Architectural Institute of Korea.
  15. Liu, M., Burns, S.A., Wen, Y.K. (2005) Multiobjective Optimization for Performance-Based Seismic Design of Steel Moment Frame Structures, Earthq. Eng. & Struct. Dyn., 34(3), pp.289-306. https://doi.org/10.1002/eqe.426
  16. Liu, M., Burns, S.A., Wen, Y.K. (2006) Genetic Algorithm Based Construction Conscious Minimum Weight Design of Seismic Steel Moment Resisting Frames, J. Struct. Eng., 132(1), 50-58. https://doi.org/10.1061/(ASCE)0733-9445(2006)132:1(50)
  17. Park, H.S., Kwon, J.H. (2003) Optimal Drift Design Model for Multi-Story Buildings Subjected to Dynamic Lateral Forces, The Struct. Des. Tall & Special Build., 12(4), pp.317-333. https://doi.org/10.1002/tal.224
  18. Seo, J.H., Song, W.K., Kwon, Y.H., Hong, K., Park, H.S. (2008) Drift Design Model for High-rise Buildings Based on Resizing Algorithm with a Weight Control Factor, The Struct. Des. Tall & Special Build., 17(3), pp.563-578. https://doi.org/10.1002/tal.366
  19. Seo, J.H., Park, H.S. (2010) Design Method to Control Wind-Induced Vibration of High-Rise Buildings Using Resizing Algorithm, J. Comput. Struct. Eng. Inst. Korea, 23, pp.465-474.
  20. Taranath, B. (1998) Steel, Concrete and Composite Design of Tall Buildings, McGraw-Hill.