DOI QR코드

DOI QR Code

Decolorization Characteristics of Acid and Basic Dyes Using Modified Zero-valent Iron

개질 영가철을 이용한 산성 및 염기성 염료의 탈색 특성

  • Choi, Jeong-Hak (Department of Environmental Engineering, Catholic University of Pusan) ;
  • Kim, Young-Hun (Department of Environmental Engineering, Andong National University)
  • 최정학 (부산가톨릭대학교 환경공학과) ;
  • 김영훈 (안동대학교 환경공학과)
  • Received : 2016.04.20
  • Accepted : 2016.12.27
  • Published : 2016.12.31

Abstract

In this study, the reductive decolorization of three acid and basic dyes using modified zero-valent iron (i.e., acid-washed iron (Aw/Fe) and palladium coated iron (Pd/Fe)) at various pH conditions (pH 3~5) was experimentally investigated and the decolorization characteristics were evaluated by analyzing the absorbance spectra and reaction kinetics. In the case of acid dyes such as methyl orange and eriochrome black T, color removal efficiencies increased as initial pH of the dye solution decreased. However, the color removal of methylene blue, a basic dye, was not affected much by the initial pH and more than 70% of color was removed within 10 min. During the decolorization reaction, the absorbance of methyl orange (${\lambda}_{max}=464nm$) and eriochrome black T (${\lambda}_{max}=528nm$) decreased in the visible range but increased in the UV range. The absorbance of methylene blue (${\lambda}_{max}=664nm$) also decreased gradually in the visible range. Pseudo-zero order, pseudo-first order, and pseudo-second order kinetic models were used to analyze the reaction kinetics. The pseudo-second order kinetic model was found to be the best with good correlation. The decolorization reaction rate constants ($k_2$) of methylene blue were relatively higher than those of methyl orange and eriochrome black T. The reaction rate constants of methyl orange and eriochrome black T increased with a decrease in the initial pH.

Keywords

References

  1. Alaton, I. A., Balcioglu, I. A., Bahnemann, D. W., 2002, Advanced oxidation of a reactive dyebath effluent: Comparison of $O_3$, $H_2O_2$/UV-C and $TiO_2$/UV-A processes, Water Res., 36, 1143-1154. https://doi.org/10.1016/S0043-1354(01)00335-9
  2. Banat, I. M., Nigam, P., Singh, D., Marchant, R., 1996, Microbial decolorization of textile-dye-containing effluents: A Review, Bioresour. Technol., 58, 217-227. https://doi.org/10.1016/S0960-8524(96)00113-7
  3. Blowes, D. W., Ptacek, C. J., Benner, S. G., McRae, C. W. T., Bennett, T. A., Puls, R. W., 2000, Treatment of inorganic contaminants using permeable reactive barriers, Journal of Contaminant Hydrology, 45, 123-137. https://doi.org/10.1016/S0169-7722(00)00122-4
  4. Burris, D. R., Campbell, T. J., Manoranjan, V. S., 1995, Sorption of trichloroethylene and tetrachlororethylene in a batch reactive metallic iron-water system, Environ. Sci. Technol., 29, 2850-2855. https://doi.org/10.1021/es00011a022
  5. Cao, J., Wei, L., Huang, Q., Wang, L., Han, S., 1999, Reducing degradation of azo dye by zero-valent iron in aqueous solution, Chemosphere, 38, 565-571. https://doi.org/10.1016/S0045-6535(98)00201-X
  6. Chen, L. C., 2000, Effects of factors and interacted factors on the optimal decolorization process of methyl orange by ozone, Water Res., 34, 974-982. https://doi.org/10.1016/S0043-1354(99)00188-8
  7. Cheng, I. F., Fernando, Q., Korte, N., 1997, Electrochemical dechlorination of 4-chlorophenol to phenol, Environ. Sci. Technol., 31, 1074-1078. https://doi.org/10.1021/es960602b
  8. Choi, J. H., Choi, S. J., Kim, Y. H., 2008, Hydrodechlorination of 2,4,6-trichlorophenol for a permeable reactive barrier using zero-valent iron and catalyzed iron, Korean J. Chem. Eng., 25, 493-500. https://doi.org/10.1007/s11814-008-0083-5
  9. Choi, J. H., Kim, Y. H., 2009, Reduction of 2,4,6-trichlorophenol with zero-valent zinc and catalyzed zinc, J. Hazard. Mater., 166, 984-991. https://doi.org/10.1016/j.jhazmat.2008.12.004
  10. Choi, J. H., Kim, Y. H., Choi, S. J., 2007, Reductive dechlorination and biodegradation of 2,4,6-trichlorophenol using sequential permeable reactive barriers: Laboratory studies, Chemosphere, 67, 1551-1557. https://doi.org/10.1016/j.chemosphere.2006.12.029
  11. Choi, J. H., Shin, W. S., Choi, S. J., Kim, Y. H., 2009, Reductive denitrification using zero-valent iron and bimetallic iron, Environ. Technol., 30, 939-946. https://doi.org/10.1080/09593330902988729
  12. Deng, N., Luo, F., Wu, F., Xiao, M., Wu, X., 2000, Discoloration of aqueous reactive dye solution in the $UV/Fe^0$ system, Water Res., 34, 2408-2411. https://doi.org/10.1016/S0043-1354(00)00099-3
  13. Fu, Y., Viraraghavan, T., 2001, Fungal decolorization of dye wastewaters: A Review, Bioresour. Technol., 79, 251-262. https://doi.org/10.1016/S0960-8524(01)00028-1
  14. Guo, J., Jiang, D., Wu, Y., Zhou, P., Lan, Y., 2011, Degradation of methyl orange by Zn(0) assisted with silica gel, J. Hazard. Mater., 194, 290-296. https://doi.org/10.1016/j.jhazmat.2011.07.099
  15. Helland, B. R., Alvarez, P. J., Schnoor, J. L., 1995, Reductive dechlorination of carbon tetrachloride with elemental iron, J. Hazard. Mater., 41, 205-216. https://doi.org/10.1016/0304-3894(94)00111-S
  16. Johnson, T. L., Fish, W., Gorby, Y. A., Tratnyek, P. G., 1998, Degradation of carbon tetrachloride by iron metal: Complexation effects on the oxide surface, Journal of Contaminant Hydrology, 29, 379-398. https://doi.org/10.1016/S0169-7722(97)00063-6
  17. Kang, S. F., Liao, C. H., Chen, M. C., 2002, Pre-oxidation and coagulation of textile wastewater by the Fenton process, Chemosphere, 46, 923-928. https://doi.org/10.1016/S0045-6535(01)00159-X
  18. Kim, Y. H., Carraway, E. R., 2000, Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons, Environ. Sci. Technol., 34, 2014-2017. https://doi.org/10.1021/es991129f
  19. Ma, L. M., Ding, Z. G., Gao, T. Y., Zhou, R. F., Xu, W. Y., Liu, J., 2004, Discoloration of methylene blue and wastewater from a plant by a Fe/Cu bimetallic system, Chemosphere, 55, 1207-1212. https://doi.org/10.1016/j.chemosphere.2003.12.021
  20. Mutlu, S. H., Yetis, U., Gurkan, T., Yilmaz, L., 2002, Decolorization of wastewater of a baker's yeast plant by membrane processes, Water Res., 36, 609-616. https://doi.org/10.1016/S0043-1354(01)00252-4
  21. Nam, S., Tratnyek, P. G., 2000, Reduction of azo dyes with zero-valent iron, Water Res., 34, 1837-1845. https://doi.org/10.1016/S0043-1354(99)00331-0
  22. Ncube, P., Bingwa, N., Baloyi, H., Meijboom, R., 2015, Catalytic activity of palladium and gold dendrimer-encapsulatednanoparticles for methylene blue reduction: A Kinetic analysis, Applied Catalysis A: General, 495, 63-71. https://doi.org/10.1016/j.apcata.2015.01.033
  23. Pendyal, B., Johns, M. M., Marshall, W. E., Ahmedna, M., Rao, R. M., 1999, Removal of sugar colorants by granular activated carbons made from binders and agricultural byproducts, Bioresour. Technol., 69, 45-51. https://doi.org/10.1016/S0960-8524(98)00172-2
  24. Vidhu, V. K., Philip, D., 2014, Catalytic degradation of organic dyes using biosynthesized silver nanoparticles, Micron, 56, 54-62. https://doi.org/10.1016/j.micron.2013.10.006

Cited by

  1. Adsorption and Photocatalytic Degradation of Dyes Using Synthesized Metal-Organic Framework NH2-MIL-101(Fe) vol.27, pp.7, 2018, https://doi.org/10.5322/JESI.2018.27.7.611