DOI QR코드

DOI QR Code

비티제를 이용한 포도 '캠벨얼리' 유기과수원 포도들명나방 방제효과

Control Efficacy of Bacillus thuringiensis against Herpetogramma luctuosalis on 'Campbell Early' Organic Vineyard

  • 송명규 (충청북도농업기술원 포도연구소) ;
  • 박재성 (충청북도농업기술원 포도연구소) ;
  • 이석호 (충청북도농업기술원 포도연구소) ;
  • 이재웅 (충청북도농업기술원 포도연구소) ;
  • 김승덕 (충청북도농업기술원 포도연구소) ;
  • 최원호 (충청북도농업기술원 포도연구소) ;
  • 김길하 (충북대학교 농업생명과학대학) ;
  • 박종호 (국립농업과학원 유기농업과)
  • 투고 : 2016.09.01
  • 심사 : 2016.10.14
  • 발행 : 2016.11.30

초록

포도 캠벨얼리 유기포도원에서 포도들명나방(Herpetogramma luctuosalis)의 발생생태를 조사하여 효율적인 방제시기를 결정하고자 시험을 수행하였다. Fig. 3의 포도들명나방 성충 발생량과 Fig. 1, Fig. 2의 평균기온과 강수량을 비교하였을 때 간이비가림 시설이어서 발생량과 강수량과의 상관관계는 적어보이고, 온도와 발생량은 비슷한 경향을 보였다. Fig. 3과 같이 포도들명나방 성충은 6월 중순 1차 피크, 8월 상순에 2차 피크, 9월 중순에 3차 피크를 보였다. 성충이 나타난 후 20일 경에 포도잎을 마는 피해가 보이기 시작했다. $25^{\circ}C$에서 알 기간이 12일, 유충은 22일로 조사되었는데, 6월 포도원에서 성충이 알을 낳고 잎을 말기까지 20일 정도 소요될 것으로 판단되었다. 비티제는 유충이 섭식을 하고 며칠간의 잠복기간을 거쳐 비티독소의 장파열과 비티균의 증식으로 유충을 죽이므로, 포도들명나방 유충이 비티제를 섭식할 수 있도록 포도잎을 말기 전에 살포해야 효과를 볼 수 있었다. 7월 상순잎을 만 상태에서 살충력은 43.6%로 매우 낮아졌고, 이른 시기에 살포하였을 경우에도 환경에 따른 분해 등이 발생해 효과가 감소되었다. 따라서 비티제를 이용해 유기포도원에서 효율적으로 포도들명나방을 방제하기 위해서는, 포도잎을 말기 전인 6월 중 하순에 살포해야 한다. 이에 유기포도원에서 나방류 피해를 예방하기 위해서는 비티제의 활용이 유용할 것으로 생각되었다.

The experiment of grape leafroller (Herpetogramma luctuosalis) was carried out at Okcheon area from 2007 to 2009 and 2015. The grape leafroller had been occurred at a campbell early' organic vineyard in Okcheon. It's larva was rolling the leaf of grape and ate the leaf. So the leaf of grape decreased. In organic vineyards, adult grape leafroller' generation rate per year showed the first peak in mid-June, the second peak in early -August and the third in mid-September. The larva showed the first peak in early July and the second peak in late August-early September. The grape leaf roller had three generations per year. And it took $60.9{\pm}1.09days$ from egg to adult in growth chamber (VS-91G09M-1300) which the relative humidity conditions was $60{\pm}10%$, temperature $25{\pm}2^{\circ}C$ and photoperiod 16L:8D (The egg : $12{\pm}0days$, larvae : $22.2{\pm}0.22days$, pupa : $10.6{\pm}0.75days$ and adult : $16.1{\pm}0.45days$). It was conducted to find out the effect of microbial pesticide treatments to control H. luctuosalis. The 4 microbial pesticides (Bacillus thurigiensis) were treated twice on the grape leaves in June 11 and 21 at an organic vineyard in Okcheon. On 10 days after last treatment, the control value of all microbial pesticides were more than 95%. When the dates of spraying to the grape leaves were on May 22, June 12 and July 2 each, the effects of microbial pesticide were 73.9%, 93.5% and 43.6% respectively. As a result, it was effective that Bt was sprayed to grape leaves on mid and late June for controling the H. luctuosalis in organic vineyard. And microbial pesticide Bt was thought to be useful to control the grape leafroller in organic vineyard.

키워드

참고문헌

  1. Animal and Plant Quarantine Agency. 2016. Plant Quarantine/ The pest information/ Prohibited Pest,http://www.qia.go.kr/listqiaBing3_2433WebAction.do?type=3&firstname=A&pager.offset=130
  2. Aronson, A. I., W. Beckman and P. Dunn. 1986. Bacillus thuringiensis and related insect pathogens. Microbil. Rev. 50: 1-24.
  3. Bravo, A., I. Gomez, J. Conde, C. Munoz-Garay, J. Sanchez, R. Miranda, M. Zhuang, S. S. Gill, and M. Soberon. 2004. Oligomerzation triggers binding of a Bacillus thuringiensis Cry1Ab pre-forming toxin to amino-peptidase N receptor leading to an insertion into membrane microdomains. Biochim Biophys. 1667: 38-44. https://doi.org/10.1016/j.bbamem.2004.08.013
  4. Bravo, A., S. Likitvivatanavong, S. S. Gill, and M. Soberon. 2011. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41: 423-431. https://doi.org/10.1016/j.ibmb.2011.02.006
  5. Broderick, N. A., K. F. Raffa, and J. Handelsman, 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Nat'l. Acad. Sci. USA 103: 15196-15199. https://doi.org/10.1073/pnas.0604865103
  6. CABI, 2009. Crop protection compendium. CABI Compendium. http://www.cabi.org.compendia (Accessed 2009).
  7. Kang, Chan Yeong, Ryu, Tae Hee, Kwon, Hye Ri, Yu, Yong Man, and Youn, Young Nam. 2016. The Ecological Characteristics of the Winter Cherry Bug Acanthocoris sordidus (Hemipter) and the Effects of Colony Formation on its Potential as an Insect Pest. Korean J. Appl. Entomol. 55(3): 235-243. https://doi.org/10.5656/KSAE.2016.06.0.025
  8. Kil, Mi-Ra, Kim, Da-A, Choi, Su-Yeon, Paek, Seung-Kyoung, Kim, Jin-Su, Jin, Da-Yong, Hwang, In-Chon and Yu, Yong-Man. 2007. Characterization of Biopesticides (Bacillus thuringiensis) Produced in Korea. The Korean Journal of Pesticide Science, 11(3): 201-209.
  9. Kim, Kil Ha, Cha, Jae Sun, Lee, Ki Yeol, Lee, Seok Ho, Song, Myung Kyu, Kim, Young Ho, Lee, Jae Wung, Ahn, Ki Su and Park Jong Han. 2007. Grape Physiological Disorder & Disease and Insect. pp. 74-75.
  10. KOSIS (KOrean Statistical Information Service). Statistical Database/ Agriculture, forestry and fishery/ Agriculture/ Crop Production Survey/ Fruit Production. http://kosis.kr/eng/statisticsList.
  11. Meijerman, L. and S. A. Ulenberg. 2000. Eurasian Tortricidae: Eupoecilia ambiguella. Arthropods of Economic Importance. http://nlbif.eti.uva.nl/bis/projects.php (Accessed 5 November 2009).
  12. Park, Y., R. M. Gonzalez-Martinez, G. Navarro-Cerrillo, M. Chakroun, Y. Kim, P. Ziarsolo, J. Blanca, J. Canizares, J. Ferre, and S. Herrero. 2014. ABCC transporters mediate insect resistance to multiple Bt toxins revealed by bulk segregant analysis. BMC Biol. 12: 46. https://doi.org/10.1186/1741-7007-12-46
  13. Pigott, C. R. and D. J. Ellar. 2007. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol. Mol. Biol. Rev. 71(2): 255-281. https://doi.org/10.1128/MMBR.00034-06
  14. Schnepf, E., N. Crickmore, J. van Rie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler, and D. H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775-806.
  15. Species 2000 & ITIS Catalogue of Life: April 2013.
  16. W. J. Bentley, 2010. Leafrollers on Ornamental and Fruit trees. Pest Notes publication 7473.
  17. Zhang, X., M. Candas, N. B. Griko, L. Rose-Young, and L. A. Jr. Bulla, 2005. Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells. Cell Death Differ. 12: 1407-1416. https://doi.org/10.1038/sj.cdd.4401675