DOI QR코드

DOI QR Code

N, K, Ca의 한정된 이온센서 이용을 전제로 한 순환식 수경재배에서 P, Mg의 조절 방법

Control of Mg and P Ion Concentration as a Precondition to Use N, K and Ca Ion Sensors in Closed Hydroponics

  • 최경이 (국립원예특작과학원 시설원예연구소) ;
  • 여경환 (국립원예특작과학원 시설원예연구소) ;
  • 이한철 (국립원예특작과학원 시설원예연구소) ;
  • 이성찬 (국립원예특작과학원 시설원예연구소) ;
  • 이중섭 (국립원예특작과학원 시설원예연구소) ;
  • 강남준 (경상대학교 농업생명과학원) ;
  • 김학진 (서울대학교 생물공학과) ;
  • 정대현 (서울대학교 생물공학과)
  • Choi, Gyeong Lee (Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Yeo, Kyung Hwan (Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Rhee, Han Cheol (Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Lee, Seong Chan (Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Lee, Jung-Sup (Protected Horticulture Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Kang, Nam Jun (Institute of Agric. & Life Sci., Gyeongsang National University) ;
  • Kim, Hak Jin (Biosystems and Biomaterials Science and Engineering, Seoul National University) ;
  • Jung, Dae Hyun (Biosystems and Biomaterials Science and Engineering, Seoul National University)
  • 투고 : 2016.03.11
  • 심사 : 2016.08.02
  • 발행 : 2016.12.30

초록

일반적인 순환식 수경재배에서는 배액을 원수로 희석하여 EC기준으로 제어하기 때문에 순환되는 배양액은 필연적으로 이온 불균형이 발생한다. 따라서 이 연구는 상용 가능성이 높은일부 이온센서(N, K, Ca)를 이용한다는 전제 하에 작물의 필수원소인 N, P, K, Ca, Mg를 이온 단위로 자동제어 할 수 있을지 검토하고자 수행하였다. 상추를 재료로 배양액 내 이온 흡수량을 2회 조사하여 양분흡수패턴과 흡수된 이온간의 흡수 상관관계를 분석하였다. $PO_4$는 N과, Ca는 Mg와 비슷한 흡수패턴을 나타났고 센서로 측정 가능한 이온들 중에서 $PO_4$는 N와 Ca는 Mg간의 상관계수도 가장 높았다. 회귀분석의 결과 도출된 $N-PO_4$간의 회귀계수는 두 번의 시험의 결과가 1.04와 0.55로 다르게 나타났으나 Ca-Mg는 0.35와 0.40으로 거의 유사한 수치를 나타내었다. 청경채, 장미를 이용하여 상관관계 적합성을 검증하고 더불어 작목확대 가능성을 검토하고자 추가 시험을 수행하였다. 청경채의 $N-PO_4$, Ca-Mg 이온간의 $R^2$은 모두 0.86과 0.86이었고 장미는 각각 0.87, 0.73으로 이었다. 회귀계수는 청경채는 0.56, 0.24이고 장미는 0.51, 0.16이었다. 종합적으로 판단했을 때 $N-PO_4$는 상추에서 반복 시험간의 결과 일치하지는 않았음에도 전체적으로는 상추, 청경채, 장미가 회귀계수가 0.55~0.58로 유사하게 나타나 모든 작물에 공통적으로 적용가능성이 있지만 Ca-Mg는 작물별로 다른 계수가 필요하다고 판단되었다. 순환식 수경재배에서 개별 이온의 실시간 제어를 위하여 센서와 장비 개발에 관한 연구가 지속적으로 이루어지겠지만 단기간에 이온제어가 실용화되기는 어려울 것으로 판단된다. 따라서 이 연구는 먼저 상용화 가능한 센서를 이용하여 상용화가 어려운 이온의 조절은 다른 방법으로 순환 식수경 재배에서 꼭 해결되어야 할 과제에 접근하였다는데 의의가 있다.

Recycling nutrient solutions in closed hydroponic production systems is usually accompanied by an imbalance of nutrient solutions when concentration is controlled according to electrical conductivity (EC) levels. This study investigated whether it was possible to automatically control the concentrations of five essential elements nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg) using only N, K and Ca ion sensors. N, P, K, Ca, and Mg uptake was measured in the nutrient solution, and relationships between absorbed ions were analyzed through twice-repeated experiments in lettuce. Results confirmed that the pattern of $PO_4$ ion uptake was similar that of N, and the pattern of Mg ion uptake was similar that of Ca. $PO_4$ ion uptake was most highly correlated with N, and Mg was most highly correlated with Ca. Regression coefficients of N and $PO_4$ were significantly different at 1.04 and 0.55, respectively, but were similar between Ca and Mg at 0.35 and 0.40, respectively. Additional experiments were conducted to measure nutrient uptake in pak choi and rose plants, both to confirm the results from the first experiment in lettuce, and to assess possible application to other crops. Coefficients of determination both for N and $PO_4$, and Ca and Mg were considerably high ($R^2=0.86$) in cultured pak choi, and similar results were observed in cultured rose ($R^2=0.87$ and 0.73, respectively). Regression coefficients for cultured pak choi were 0.56 and 0.24, respectively, and for rose were 0.51 and 0.16, respectively. Although the results obtained for N and $PO_4$ were not consistent between the lettuce experiments, N and $PO_4$ have similar regression coefficients for all crops. No common coefficient was found between Ca and Mg.

키워드

참고문헌

  1. Ahn, T.I., J.W. Shin, and J.E. Son (2010) EC analysis of changes in ion concentration with time and drainage ratio under EC-based nutrient control in closed-loop soilless culture for sweet pepper plants (Capsicum annuum L. 'Boogie'). Journal of Bio-Environment Control, 19(4):298-304
  2. Ahn, T.I., and J.E. Son (2011) Changes in ion balance and individual ionic contributions to EC reading at different renewal intervals of nutrient solution under EC-based nutrient control in closed-loop soilless culture for sweet pepper plants(Capsicum annuum L. 'Fiesta'). Kor. J. Hort. Sci. Technol. 29(1):29-35
  3. Choi, G.L., M.W. Cho, T.C. Seo, M.Y. Roh, H.C. Rhee, and S.Y. Lee (2008) Change in uptake and tissue contents of N, P, and K at different growth stages in hydroponically-grown cut roses. Journal of Bio-Environment Control. 17(4): 247-251
  4. Choi, G.L., J.W. Cheong, H.C. Rhee, K.H. Yeo, and N.J. Kang (2013) Effect of EC level on the growth of major leafy vegetable in hydroponics. Kor. J. Hort. Sci. Technol. 31(SUPPL. II):62
  5. Feng, C., W. Cali, and T. Yonging (2011) Virtual ion selective electrode for online measurement of nutrient solution components. Sensors Uournal, IEEE 11(2):462-468. doi:10.1109/JSEN.2010.2060479
  6. Gieling, T.H., G.V. Straten, H.J.Janssen, and H. Wouters (2005) ISE and chemfet sensors in greenhouse cultivation. Sensors and Actuators B 105:74-80 https://doi.org/10.1016/S0925-4005(04)00113-3
  7. Gutierrez, M., S. Alegret, R. Caceres, J. Casadesus, O. Marfa, and M.D. Valle (2008) Nutrient solution monitoring in greenhouse cultivation employing a potentiometric electronic tongue. J. Agr. Food. Chem. 56: 1810-1817 https://doi.org/10.1021/jf073438s
  8. Kim, H.J., J.W. Hummel, and S.J. Birrell (2006) Evaluation of nitrate and potassium ion-selective membranes for soil macronutrient sensing. ASABE 49(3):597-606. doi:10.13031/2013.20476
  9. Kim H.J., J.H. Kim, Y.H. Woo, W.S. Kim, and Y.I. Nam (2001) Nutrient and water uptake of tomato plants by growth stage in closed perlite culture. J. Kir. Soc. Hort.Sci.42(3):254-258
  10. Kim, H.J., W.K. Kim, M.Y. Roh, C.I. Kang, J.M.. Park and K.A. Sudduth (2013) Automated sensing of hydroponic macronutrients using a computer-controlled system with an array of ion-selective electrodes. Computers and Electronics in Agriculture. 93:46-54 https://doi.org/10.1016/j.compag.2013.01.011
  11. Kwon, O.H., W.H Kim, S.Y Lee, H.J Lee, and K.S. Cheon (2014) Effect of Drainage Mixing Ratio for Rose Substrate Culture in a Closed System. Kor. J. Hort. Sci. Technol. 32(Suppl I): 171
  12. Lee, Y.H., K.S. Park, and Y.B. Lee (2005) Optimum Renewal Time of Nutrient Solution for Rose Substrate Culture in a Closed System. Kor. J. Hort. Sci. Technol. 23 (SUPPL. I): 127
  13. Morard, P (1997) Possible use of ion selective electrodes for nutrient solutions in recirculated systems. Proc. 9th Internat. Congr. Soilless culture, Jersey, 1996. ISOSC, Wageningen, The Netherlands, 1996. 291-298
  14. Roh, M.Y., G.L. Choi, H.C. Rhee, T.C. Seo, W.S. Kim, and Y.B. Lee (2009) Changes in nutrient element concentrations and growth of cucumber plants (Cucumis sativus L. cv. Joeun Baegdadagi) as affected by nutrient solution composition in recirculating hydroponic systems. Journal of Bio-Environment Control, 18(4):363-369
  15. Savvas, D. and G. Manos (1999) Automated control of nutrient solution in closed soilless culture systems. J. Agric. Engng Res. 73:29-33. doi:10.1006/jaer.1998.0389
  16. Sonneveld, C (2002) Composition of nutrient solutions, pp. 179-210. In: D. Savvas and H. Passam(eds.). Hydroponic production of vegetables and ornamentals. Embryo publications, Athens, Greece
  17. Yang, E.Y., J.S. Oh, and Y.B Lee (2003) Effect of mineral nutrient control on nutrient uptake, growth and quality of rose in closed system. Kor. J. Hort. Sci. Technol. 21 (SUPPL. II):104