하이브리드 이산화티탄의 자기조직체 형성공법을 이용하여 제조된 하이브리드 이산화티탄의 자외선차단 상승효과

  • 발행 : 2016.09.30

초록

화장료의 UV차단과 은폐효과를 갖는 이산화티탄을 사용하여 자기조직체 형성공법을 적용한 하이브리드 이산화티탄을 제조하고 형태, 성질, 공정의 최적조건과 자외선차단 개선을 확인하였다. 하이브리드 이산화티탄은 마이크로 이산화티탄(250~300nm)의 표면에 나노 이산화티탄(20~30nm)을 자기조직체 형성공법을 이용해 결합시킨, 이산화티탄 대 이산화티탄의 결합체를 말한다. 하이브리드 이산화티탄 제조의 최적조건을 알아내기 위해 (-)을 띄는 마이크로 이산화티탄의 표면에 양이온의 링크로 써 $AlCl_3$를 농도별로 조정하고, 그에 따른 마이크로와 나노 이산화티탄의 투입비율을 달리하여 각각의 조건에서 만들어진 시료를 광학분석, 입도분석, 전위차분석 등을 이용해 확인하고 최적의 제조 조건을 알 수 있었다. 최적의 제조 조건에서 만들어진 하이브리드 이산화티탄의 자외선차단 상승효과를 확인하기 위하여 하이브리드 이산화티탄이 첨가된 화장료와 사용된 하이브리드 이산화티탄과 같은 비율의 마이크로와 나노 이산화티탄을 첨가한 화장료의 SPF in-vitro를 측정하였고, 15%내지 30%의 자외선차단 상승 효과를 확인하였다.

The purpose of this study is to find the optimum conditions for manufacturing titanium dioxide using a hybrid self-assembly forming method, to confirm the shape, properties and synergy effect of UV protection for hybrid titanium dioxide. Hybrid titanium dioxide, manufactured by forming self-assembly of different sizes consisting of two kinds of titanium dioxides, has micro titanium dioxide (250nm~300nm) for support material, Nano titanium dioxide (20~30nm) for surface material, coating support material. Adjustment experiments of $AlCl_3$ concentration and both titanium dioxide ratio were conducted to find the optimized conditions for the surface coating of titanium dioxide striking a negative charge, a sample made of the optimized process was confirmed through an optical analysis, particle size analysis, and potentiometric analysis. The SPF in-vitro value of the cosmetics samples containing hybrid titanium dioxide showed 15~30% higher levels than the cosmetics samples containing both titanium dioxides mixture.

키워드

참고문헌

  1. Colipa, "OPINION ON Titanium Dioxide (nano form)", p. 103, Scientific Committee on Consumer Safety, EU(2014).
  2. Xiaobo Chen, Annabella Selloni, Introduction: Titanium Dioxide($TiO_2$) Nanomaterials, Chem Reviews, 114, 9281(2014). https://doi.org/10.1021/cr500422r
  3. Quint H. Powell, George P. Fotou, Toivo T. Kodas, Bruce M. Anderson, Synthesis of Alumina- and Alumina/Silica-Coated Titania Particles in an Aerosol Flow Reactor, Chemistry of Materials, 9, 685(1997). https://doi.org/10.1021/cm960334g
  4. National Toxicology Program, Toxicology and carcinogenesis studies of talc (CAS No 14807-96-6) in F344/N rats and B6C3F, mice (Inhalation studies), National Toxicology Program technical report series, 421, 1(1993).
  5. Maxim N. Tchoul, Scott P. Fillery, Hilmar Koerner, Lawrence F. Drummy, Folusho T. Oyerokun, Peter A. Mirau, Michael F. Durstock, Richard A. Vaia, Assemblies of Titanium Dioxide-Polystyrene Hybrid Nanoparticles for Dielectric Applications, Chemistry of Materials, 22, 1749(2010). https://doi.org/10.1021/cm903182n
  6. Chun Cheng, Abbas Amini, Chao Zhu, Zuli Xu, Haisheng Song, Ning Wang, Enhanced photocatalytic performance of $TiO_2$-ZnO hybrid nanostructures, Nature Scientific Reports, 4181, 1(2014).
  7. Clement Sanchez, Beatriz Julian, Philippe Belleville, Michael Popall, Applications of hybrid organic-inorganic nanocomposites, Journal of Materials Chemistry, 15, 3559(2005). https://doi.org/10.1039/b509097k
  8. Haihong Ma, Tiejun Shi, Qiusheng Song, Synthesis and Characterization of Novel $PVA/SiO_2-TiO_2$ Hybrid Fibers, Fibers, 2, 278(2014).
  9. Sung Rae Kim, Sang Goo Lee, Jeong Min Yang, Jong Dae Lee, Preparation and Characterization of Hybrid Ozone Resistance Coating Film Using Carbon Nanotube, Polymer(Korea), 38(5), 573(2014).
  10. Liping Liu, Gongming Wang, Yat Li, Yadong Li, Jin Z. Zhang, CdSe Quantum Dot-Sensitized $Au/TiO_2$ Hybrid Mesoporous Films and Their Enhanced Photoelectrochemical Performance, Nano Research, 4(3), 249(2011). https://doi.org/10.1007/s12274-010-0076-7
  11. Gustavo Larsen, Melissa Buechler-Skoda, Chao Nguyen, David Vu, Edgar Lotero, Structure of hybrid (organic/inorganic) $TiO_2{\pm}SiO_2$ xerogels II: thermal behavior as monitored by temperature-programmed techniques and spectroscopy, Journal of Non-Crystalline Solids, 279, 161(2001). https://doi.org/10.1016/S0022-3093(00)00414-2
  12. Feng Lin, Preparation and Characterization of Polymer $TiO_2$ Hybrid Nanocomposites Via In-situ Polymerization", p. 1, University of Waterloo, Canada (2006).
  13. Donghai Wang, Daiwon Choi, Juan Li, Zhenguo Yang, Zimin Nie, Rong Kou, Dehong Hu, Chongmin Wang, Laxmikant V. Saraf, Jiguang Zhang, Ilhan A. Aksay, Jun Liu, Self-Assembled $TiO_2$- Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion, ACS Nano, 3(4), 907(2009). https://doi.org/10.1021/nn900150y
  14. Qisi Yu, Peiyi Wu,Peng Xu, Lei Li, Tao Liub, Ling Zhao, Synthesis of cellulose/titanium dioxide hybrids in supercritical carbon dioxide, Green Chemistry, 10, 1061(2008). https://doi.org/10.1039/b806094k
  15. Hai-Xia Wu, Ting-Jie Wang, Yong Jin, Film-Coating Process of Hydrated Alumina on $TiO_2$ Particles, Ind. Eng. Chem. Res., 45, 1337(2006). https://doi.org/10.1021/ie0510167
  16. Susan Koppen, Walter Langel, Simulation of Adhesion Forces and Energies of Peptides on Titanium Dioxide Surfaces, Langmuir, 26(19), 15248(2010). https://doi.org/10.1021/la101687m
  17. Han Gao, Bing Qiao, Ting-Jie Wang, Dezheng Wang, Yong Jin, Cerium Oxide Coating of Titanium Dioxide Pigment to Decrease Its Photocatalytic Activity, Ind. Eng. Chem. Res., 53, 189(2014). https://doi.org/10.1021/ie402539n
  18. Yi Ma, Xiuli Wang, Yushuai Jia, Xiaobo Chen, Hongxian Han, Can Li, Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations, Chem Reviews, 114, 9987(2014). https://doi.org/10.1021/cr500008u
  19. Seok-Min Yun, Jinhoon Kim, Euigyung Jeong, Ji Sun Im, Young-Seak Lee, Methylene Blue Photodegradation Properties of Anatase/brookite Hybrid $TiO_2$ Photocatalyst Prepared with Different Acid Catalysts, Appl. Chem. Eng., 22(1), 21(2011).
  20. Chang-Ho Lee, Sung-Rae Kim, Jong-Dae Lee, The hybrid film characteristics of UV-curable organic-inorganic coating solutions, J. of the Korean Oil Chemists' Soc., 28(2), 240(2011).
  21. Yongye Liang, Hailiang Wang, Hernan Sanchez Casalongue, Zhuo Chen and Hongjie Dai, $TiO_2$ Nanocrystals Grown on Graphene as Advanced Photocatalytic Hybrid Materials, Nano Research, 3(10), 701(2010). https://doi.org/10.1007/s12274-010-0033-5