딥러닝 기반 비디오 스토리 학습 기술

  • Published : 2016.09.30

Abstract

Keywords

References

  1. Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature vol. 521, pp. 436-444, 2015. https://doi.org/10.1038/nature14539
  2. A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," In Advances in neural information processing systems (NIPS), 2012.
  3. R. B. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp. 580-587, 2014.
  4. B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, "Learning deep features for scene recognition using places database," In Advances in neural information processing systems (NIPS), pp. 487-495, 2014.
  5. F. Schroff, D. Kalenichenko, and J. Philbin. "Facenet: A unified embedding for face recognition and clustering." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 815-823, 2015.
  6. Taigman, Y., Yang, M., Ranzato, M. A., & Wolf, L. (2014). Deepface: Closing the gap to human-level performance in face verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1701-1708).
  7. A. Toshev, and C. Szegedy. "Deeppose: Human pose estimation via deep neural networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1653-1660, 2014.
  8. J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler, "Joint training of a convolutional network and a graphical model for human pose estimation," In Advances in neural information processing systems (NIPS), pp. 1799-1807, 2014.
  9. S.-W. Lee, C.-Y. Lee, D. Kwak, J. Kim, J. Kim, and B.-T. Zhang, "Dual-memory deep learning architectures for lifelong learning of everyday human behaviors," International Joint Conference on Artificial Intelligence (IJCAI 2016), pp. 1669-1675, 2016.
  10. C. Park, and G. Kim, "Expressing an Image Stream with a Sequence of Natural Sentences," In Advances in neural information processing systems (NIPS), 2015.
  11. Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler, "Aligning books and movies: Towards story-like visual explanations by watching movies and reading books," In Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 19-27, 2015.
  12. K.-M. Kim, C.-J. Nan, M.-O. Heo, S.-H. Choi, B.-T. Zhang, "DeepStory: video story qa by deep embedded memory networks," AAAI 2017 (submitted)
  13. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol.86(11), 2278-2324, 1998. https://doi.org/10.1109/5.726791
  14. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: a simple way to prevent neural networks from overfitting," J. Machine Learning Res. vol.15, pp. 1929-1958, 2014.
  15. C. Szegedy, W. Liu, W., Y. Jia, P. Sermanet, S. Reed, D. Anguelov, and A. Rabinovich, "Going deeper with convolutions," In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) pp. 1-9, 2015.
  16. K. He, X. Zhang, S. Ren, J. Sun, "Deep Residual Learning for Image Recognition," In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
  17. Y. Bengio, A. Courville, and P. Vincent. "Representation learning: A review and new perspectives." IEEE transactions on pattern analysis and machine intelligence, vol.35.8 , pp. 1798-1828, 2013. https://doi.org/10.1109/TPAMI.2013.50
  18. W. W. Zhu, A. Berndsen, E. C. Madsen, M. Tan, I. H. Stairs, A. Brazier, P. Lazarus, R. Lynch, P. Scholz, K. Stovall, et al. "Searching for pulsars using image pattern recognition," The Astrophysical Journal, vol.781(2):117, 2014. https://doi.org/10.1088/0004-637X/781/2/117
  19. G. Hinton, and R. Salakhutdinov. "Reducing the dimensionality of data with neural networks." Science 313.5786, pp. 504-507, 2006. https://doi.org/10.1126/science.1127647
  20. R. Salakhutdinov, and G. Hinton, "Deep Boltzmann machines," In Proc. International Conference on Artificial Intelligence and Statistics (AISTATS), pp. 448-455, 2009.
  21. D. P. Kingma, M. Welling, "Auto-Encoding Variational Bayes," International Conference on Learning Representations (ICLR), 2014.
  22. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, and Y. Bengio, "Generative adversarial nets," In Advances in Neural Information Processing Systems (NIPS), pp. 2672-2680, 2014.
  23. T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, "Distributed representations of words and phrases and their compositionality," In Proc. Advances in Neural Information Processing Systems (NIPS), pp. 3111-3119, 2013.
  24. S. Hochreiter, and J. Schmidhuber, "Long short-term memory," Neural Comput. vol. 9, pp. 1735-1780, 1997. https://doi.org/10.1162/neco.1997.9.8.1735
  25. K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H Schwenk, and Y. Bengio, "Learning phrase representations using RNN encoder-decoder for statistical machine translation," Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014.
  26. J. Chung, C. Gulcehre, K.H. Cho, and Y. Bengio, Empirical Evalutation of Gated Recurrent Neural Networks on Sequence Modeling, arXiv:1412.3555, 2014.
  27. W. Zhang and M. Lapata, "Chinese Poetry Generation with Recurrent Neural Networks," Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014.
  28. A. Karpathy, "The Unreasonalbe Effectiveness of Recurrent Neural Networks," http://karpathy.github.io/2015/05/21/rnn-ef fectiveness/
  29. http://benjamin.wtf
  30. K. Gregor, I. Danihelka, A. Graves, D. J. Rezende, D. Wierstra, "DRAW: a recurrent neural network for image generation," International Conference on Machine Learning (ICML), 2015.
  31. A. van den Oord, N. Kalchbrenner, K. Kavukcuoglu, "Pixel recurrent neural networks," International Conference on Machine Learning (ICML), 2016.
  32. J. Weston, S. Chopra, and A. Bordes, "Memory networks," International Conference on Learning Representation (ICLR), 2015.
  33. S. Sukhbaatar, J. Weston, and R. Fergus. "End-to-end memory networks." Advances in neural information processing systems (NIPS), 2015.
  34. A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani, V. Zhong, R. Paulus, and R. Socher, "Ask Me Anything: Dynamic Memory Networks for Natural Language Processing," International Conference on Machine Learning (ICML), 2016.
  35. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "Imageneet: A large-scale hierarchical image database," In Computer Vision and Pattern Recognition (CVPR), pp. 248-255, 2009.
  36. T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C. L. Zitnick, "Microsoft coco: Common objects in context," In Computer Vision-ECCV 2014, pp. 740-755, 2014.
  37. S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra, C. L. Zitnick and D. Parikh, "VQA: Visual Question Answering," In International Conference on Computer Vision (ICCV), 2015.
  38. R. Krishna, Y. Zhu, O. Groth, J. Johnson, K. Hata, J. Kravitz, S. Chen, Y. Kalantidis, L.-J. Li, D. Shamma, M. Bernstein, and L. Fei-Fei, "Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations," https://arxiv.org/abs/1602.07332, 2016.
  39. J. Markoff, "A Learning Advance in Artificial Intelligence Rivals Human Abilities". The New York Times, 2015-12-10.
  40. O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, "Show and tell: A neural image caption generator," In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3156-3164, 2015.
  41. K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhutdinov, R. Zemel, and Y. Bengio, "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention ," International Conference on Machine Learning (ICML), 2015.
  42. A. Karpathy, and L. Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions," In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
  43. H. Fang, S. Gupta, F. Iandola, R. Srivastava, L. Deng, P. Dollár, J. Gao, X. He, M. Mitchell, J. C. Platt, C. L. Zitnick, and G. Zweig, "From Captions to Visual Concepts and Back," In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
  44. X. Chen, and C. L. Zitnick, "Mind's Eye: A Recurrent Visual Representation for Image Caption Generation," In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015
  45. R. Socher, M. Ganjoo, C. D. Manning, and A. Ng, "zero-shot learning through cross-modal transfer," In Advances in neural information processing systems (NIPS), pp. 935-943, 2013.
  46. R. Kiros, R. Salakhutdinov, and R. Zemel,."Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models," Transactions of the Association for Computational Linguistics, (To appear).
  47. L. Ba, K. Swersky, and S. Fidler. "Predicting deep zero-shot convolutional neural networks using textual descriptions," Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015.
  48. E. Mansimov, E. Parisotto, J. Ba, and R. Salakhutdinov, "Generating Images from Captions with Attention," International Conference on Learning Representation (ICLR), 2016.
  49. S. Reed, Z. Akata, X. Yan, L. Logeswaran, Bernt Schiele, and H. Lee, "Generative Adversarial Text to Image Synthesis," International Conference on Machine Learning (ICML), 2016.
  50. A. Fukui, D. H. Park, D. Yang, A. Rohrbach, T. Darrell, M. Rohrbach, "Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding," EMNLP 2016 (accepted).
  51. J.-H. Kim, S.-W. Lee, D.-H. Kwak, M.-O. Heo, J. Kim, J.-W. Ha, B.-T. Zhang, "Multimodal Residual Learning for Visual QA, " Advances in neural information processing systems (NIPS) 2016 (accepted).
  52. Q. Wu, D. Teney, P. Wang, C. Shen, A. Dick, and A. van den Hengel, "Visual Question Answering: A Survey of Methods and Datasets," arXiv:1607.05910, 2016.
  53. K. Kafle, and C. Kanan, "Visual Question Answering: Datasets, Algorithms, and Future Challenges", arXiv:1610.01465, 2016.
  54. A. Rohrbach, M. Rohrbach, N. Tandon, and B. Schiele, "A dataset for movie description," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
  55. M. Tapaswi, Y Zhu, R. Stiefelhagen, A. Torralba, R. Urtasun, and S. Fidler, "Movieqa: Understanding stories in movies through question- answering," IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
  56. C. Fan, and D. J. Crandall, "DeepDiary: Automatic Caption Generation for Lifelogging Image Streams," arXiv:1608.03819v1, 2016.
  57. S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. Mooney, and K. Saenko, " Translating videos to natural language using deep recurrent neural networks," the 2015 Conference of the North American Chapter of the Association for Computational Linguistics - Human Language Technologies (NAACL-HLT), 2015.
  58. A. Rohrbach, M. Rohrbach, and B. Schiele, "The long-short story of movie description," German Conference on Pattern Recognition, Springer International Publishing, 2015.
  59. R. Kiros, Y. Zhu, R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, and S. Fidler, "Skip-thought vectors," In Advances in neural information processing systems (NIPS), pp. 3294-3302, 2015.
  60. L.J.P. van der Maaten and G.E. Hinton. "Visualizing High-Dimensional Data Using t-SNE," Journal of Machine Learning Research 9(Nov):2579-2605, 2008.
  61. L. Zhu, Z. Xu, Y. Yang, and A. Hauptmann, "Uncovering Temporal Context for Video Question and Answering," arXiv preprint arXiv:1511.04670, 2015.