DOI QR코드

DOI QR Code

교통망 관찰과 도시 특징지도를 위한 퍼지영역 온톨로지 기반 오피니언 마이닝

Fuzzy Domain Ontology-based Opinion Mining for Transportation Network Monitoring and City Features Map

  • 투고 : 2015.12.04
  • 심사 : 2016.02.03
  • 발행 : 2016.02.28

초록

트래픽 혼잡이 도심지역에서는 급속히 증가하고 있다. 이 문제를 해결하기 위하여 유용한 핵심 정보를 사용하여 트래픽 상황을 신속하게 인지할 수 있는 실시간 그리고 지능적인 방안이 필요하다. 본 연구는 실시간 교통망을 관찰하고 여행자를 위한 도시의 극성 지도를 구축하기 위하여 퍼지기반 오피니언 마이닝 시스템을 제안한다. 제안된 시스템은 도시의 교통 상황에 관련한 트위터 및 리뷰를 추출하고, 특징 오피니언을 추출하여, 퍼지기반 오피니언 마이닝 시스템를 사용하여 교통 및 도시의 특징적 극성을 규명한다. $Prot{\acute{e}}g{\acute{e}}$ OWL 과 자바를 사용하여 퍼지기반 오피니언 마이닝 시스템과 그 지능형 프로토타입을 개발한다. 실험을 통하여 트위트 및 리뷰의 분석과 오피니언 마이닝 측면에서 성능이 개선됨을 확인하였다.

Traffic congestions are rapidly increasing in urban areas. In order to reduce these problems, it needs real-time data and intelligent techniques to quickly identify traffic activities with useful information. This paper proposes a Fuzzy Domain Ontology(FDO)-based opinion mining system to monitor the transportation network in real-time as well to make a city polarity map for travelers. The proposed system retrieves tweets and reviews related to transportation activities and a city. The feature opinions are extracted from these tweets and reviews and then used FDO to identify transportation and city features polarity. This FDO and intelligent prototype are developed using $Prot{\acute{e}}g{\acute{e}}$ OWL (Web Ontology Language) and JAVA, respectively. The experimental result shows satisfactory improvement in tweets and review's analyzing and opinion mining.

키워드

참고문헌

  1. Liu B., Hu M. and Cheng J.(2005), "Opinion observer: Analyzing and comparing opinions on the Web," in Proc. 14th Int. Conf. World Wide Web, pp.342-351.
  2. Cao J., Zeng K. and Wang H.(2014), "Web-based traffic sentiment analysis: Methods and Applications," IEEE transactions on Intelligent Transportation systems, vol. 15, pp.844-853. https://doi.org/10.1109/TITS.2013.2291241
  3. Kim S. M. and Hovy E.(2006), "Extracting opinions, opinion holders, and topics expressed in online news media text," in Proc. Workshop Sentiment Subj. Text, pp.1-8.
  4. Ali F., Kim E. K. and Kim Y. G.(2015), "Type-2 fuzzy ontology-based opinion mining and information extraction: A proposal to automate the hotel reservation system," Applied Intelligence, vol. 42, pp.481-500. https://doi.org/10.1007/s10489-014-0609-y
  5. Jeong H., Shin D. and Choi J.(2011), "FEROM: Feature Extraction and Refinement for opinion Mining," ETRI, vol. 33, pp.720-730. https://doi.org/10.4218/etrij.11.0110.0627
  6. Kawathekar S. A. and Kshirsagar M. M.(2012), "Movie review analysis using Rule-based and support vector machines methods," Journal of engineering, vol. 2, pp.389-391.
  7. Syeedunnissa S. F., Hussain A. R. and Hameed M. A.(2013), "Supervised opinion mining of social network data using a Bag-of-Words approach on the cloud," Advance in Intelligent Systems and Computing, vol. 2, pp.299-309.
  8. Gilboa S., Jaffe E. D., Vianelli D., Pastore A. and Herstein A.(2015), "A summated rating scale for measuring city image," Cities vol. 44, pp.50-59. https://doi.org/10.1016/j.cities.2015.01.002
  9. Bertrand K. Z., Bialik M., Virdee K., Gros A. and Yam Y. B.(2013), "Sentiment in New York City: a high resolution spatial and temporal view," New England Complex Systems Institute.
  10. Bobillo F. and Straccia U.(2011), "Fuzzy ontology representation usnig OWL 2," Approx Reason, vol. 52, pp.1073-1094. https://doi.org/10.1016/j.ijar.2011.05.003
  11. Dongli Y., Suihua W. and Ailing Z.(2009), "Traffic accidents knowledge management based on ontology," International conference on fuzzy systems and knowledge discovery, pp.447-449.
  12. Lin C. J. and Chao P. H.(2010), "tourism-Related Opinion Mining," 22nd conference on computational linguistics and speech processing, pp.3-16.
  13. Ali F., Kim E. K. amd Kim Y. G.(2015), "Type-2 fuzzy ontology-based semantic knowledge for collision avoidance of autonomous underwater vehicles," Information Sciences, vol. 295, pp.441-464. https://doi.org/10.1016/j.ins.2014.10.013
  14. Zadeh L. A.(1965) "Fuzzy sets," Inf Cont, vol. 8, pp.338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  15. Baccianella B., Andrea E. and Fabrizio S.(2010), "SENTIWORDNET 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining," Conference on International Language Resource and Evaluation.

피인용 문헌

  1. Graph Adaptation Network with Domain-Specific Word Alignment for Cross-Domain Relation Extraction vol.20, pp.24, 2016, https://doi.org/10.3390/s20247180