DOI QR코드

DOI QR Code

Fuzzy Domain Ontology-based Opinion Mining for Transportation Network Monitoring and City Features Map

교통망 관찰과 도시 특징지도를 위한 퍼지영역 온톨로지 기반 오피니언 마이닝

  • Received : 2015.12.04
  • Accepted : 2016.02.03
  • Published : 2016.02.28

Abstract

Traffic congestions are rapidly increasing in urban areas. In order to reduce these problems, it needs real-time data and intelligent techniques to quickly identify traffic activities with useful information. This paper proposes a Fuzzy Domain Ontology(FDO)-based opinion mining system to monitor the transportation network in real-time as well to make a city polarity map for travelers. The proposed system retrieves tweets and reviews related to transportation activities and a city. The feature opinions are extracted from these tweets and reviews and then used FDO to identify transportation and city features polarity. This FDO and intelligent prototype are developed using $Prot{\acute{e}}g{\acute{e}}$ OWL (Web Ontology Language) and JAVA, respectively. The experimental result shows satisfactory improvement in tweets and review's analyzing and opinion mining.

트래픽 혼잡이 도심지역에서는 급속히 증가하고 있다. 이 문제를 해결하기 위하여 유용한 핵심 정보를 사용하여 트래픽 상황을 신속하게 인지할 수 있는 실시간 그리고 지능적인 방안이 필요하다. 본 연구는 실시간 교통망을 관찰하고 여행자를 위한 도시의 극성 지도를 구축하기 위하여 퍼지기반 오피니언 마이닝 시스템을 제안한다. 제안된 시스템은 도시의 교통 상황에 관련한 트위터 및 리뷰를 추출하고, 특징 오피니언을 추출하여, 퍼지기반 오피니언 마이닝 시스템를 사용하여 교통 및 도시의 특징적 극성을 규명한다. $Prot{\acute{e}}g{\acute{e}}$ OWL 과 자바를 사용하여 퍼지기반 오피니언 마이닝 시스템과 그 지능형 프로토타입을 개발한다. 실험을 통하여 트위트 및 리뷰의 분석과 오피니언 마이닝 측면에서 성능이 개선됨을 확인하였다.

Keywords

References

  1. Liu B., Hu M. and Cheng J.(2005), "Opinion observer: Analyzing and comparing opinions on the Web," in Proc. 14th Int. Conf. World Wide Web, pp.342-351.
  2. Cao J., Zeng K. and Wang H.(2014), "Web-based traffic sentiment analysis: Methods and Applications," IEEE transactions on Intelligent Transportation systems, vol. 15, pp.844-853. https://doi.org/10.1109/TITS.2013.2291241
  3. Kim S. M. and Hovy E.(2006), "Extracting opinions, opinion holders, and topics expressed in online news media text," in Proc. Workshop Sentiment Subj. Text, pp.1-8.
  4. Ali F., Kim E. K. and Kim Y. G.(2015), "Type-2 fuzzy ontology-based opinion mining and information extraction: A proposal to automate the hotel reservation system," Applied Intelligence, vol. 42, pp.481-500. https://doi.org/10.1007/s10489-014-0609-y
  5. Jeong H., Shin D. and Choi J.(2011), "FEROM: Feature Extraction and Refinement for opinion Mining," ETRI, vol. 33, pp.720-730. https://doi.org/10.4218/etrij.11.0110.0627
  6. Kawathekar S. A. and Kshirsagar M. M.(2012), "Movie review analysis using Rule-based and support vector machines methods," Journal of engineering, vol. 2, pp.389-391.
  7. Syeedunnissa S. F., Hussain A. R. and Hameed M. A.(2013), "Supervised opinion mining of social network data using a Bag-of-Words approach on the cloud," Advance in Intelligent Systems and Computing, vol. 2, pp.299-309.
  8. Gilboa S., Jaffe E. D., Vianelli D., Pastore A. and Herstein A.(2015), "A summated rating scale for measuring city image," Cities vol. 44, pp.50-59. https://doi.org/10.1016/j.cities.2015.01.002
  9. Bertrand K. Z., Bialik M., Virdee K., Gros A. and Yam Y. B.(2013), "Sentiment in New York City: a high resolution spatial and temporal view," New England Complex Systems Institute.
  10. Bobillo F. and Straccia U.(2011), "Fuzzy ontology representation usnig OWL 2," Approx Reason, vol. 52, pp.1073-1094. https://doi.org/10.1016/j.ijar.2011.05.003
  11. Dongli Y., Suihua W. and Ailing Z.(2009), "Traffic accidents knowledge management based on ontology," International conference on fuzzy systems and knowledge discovery, pp.447-449.
  12. Lin C. J. and Chao P. H.(2010), "tourism-Related Opinion Mining," 22nd conference on computational linguistics and speech processing, pp.3-16.
  13. Ali F., Kim E. K. amd Kim Y. G.(2015), "Type-2 fuzzy ontology-based semantic knowledge for collision avoidance of autonomous underwater vehicles," Information Sciences, vol. 295, pp.441-464. https://doi.org/10.1016/j.ins.2014.10.013
  14. Zadeh L. A.(1965) "Fuzzy sets," Inf Cont, vol. 8, pp.338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  15. Baccianella B., Andrea E. and Fabrizio S.(2010), "SENTIWORDNET 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining," Conference on International Language Resource and Evaluation.

Cited by

  1. Graph Adaptation Network with Domain-Specific Word Alignment for Cross-Domain Relation Extraction vol.20, pp.24, 2016, https://doi.org/10.3390/s20247180