DOI QR코드

DOI QR Code

Nonlinear seismic response of a masonry arch bridge

  • Sayin, Erkut (Department of Civil Engineering, Firat University)
  • Received : 2015.10.15
  • Accepted : 2015.01.14
  • Published : 2016.02.25

Abstract

Historical structures that function as a bridge from past to present are the cultural and social reflections of societies. Masonry bridges are one of the important historical structures. These bridges are vulnerable against to seismic action. In this study, linear and non-linear dynamic analyses of historical Nadir Bridge are assessed. The bridge is modelled with three dimensional finite elements. For the seismic effect, artificial acceleration records are generated considering the seismic characteristics of the region where the bridge is located. Seismic response of the bridge is investigated.

Keywords

References

  1. ANSYS, (2008), Swanson Analysis System.
  2. Altunisik, A.C., Bayraktar, A., Sevim, B. and Birinci, F. (2011), "Vibration-based operational modal analysis of the Mikron historic arch bridge after restoration", Civ. Eng. Envir. Syst., 28(3), 247-259. https://doi.org/10.1080/10286608.2011.588328
  3. Bayraktar, A., Altunisik, A.C., Sevim, B., Turker, T., Akkose, M. and Coskun, N. (2008), "Modal analysis, experimental validation and calibration of a historical masonry minaret", J. Test. Evaluation, 36(6), 516-524.
  4. Bayraktar, A., Altunisik, A.C., Birinci, F., Sevim, B. and Turker, T. (2010), "Finite element analysis and vibration testing of a two-span masonry arch bridge", J. Perform. Constr. Facil., 24(1), 46-52. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000060
  5. Beconcini, M.L. Buratti, G. Croce, P. Mengozzi, M. Orsini, P. and Luise, M. (2007), "Dynamic characterization of a five spans historical masonry arch bridge", ARCH'07-5th International Conference on Arch Bridges, 399-407.
  6. Bernardeschi, K., Padovani, C. and Pasquinelli, G. (2004), "Numerical modeling of the structural behavior of Buti's Bell tower", J. Cultural Herit., 5(4), 371-378. https://doi.org/10.1016/j.culher.2004.01.004
  7. Brencich, A. and Sabia, D. (2008), "Experimental identification of a multi-span masonry bridge: the Tanaro bridge", Constr. Build. Mater., 22(10), 2087-2099. https://doi.org/10.1016/j.conbuildmat.2007.07.031
  8. Carpinteri, A., Invernizzi, S. and Lacidogna, G. (2005), "In Situ damage assessment and nonlinear modelling of a historical masonry tower", Eng. Struct., 27(3), 387-395. https://doi.org/10.1016/j.engstruct.2004.11.001
  9. Chung, J. and Hulbert, G.M. (1993), "A time integration algorithm for structural dynamics with improved numerical dissipation: The Generalized-${\alpha}$ Method", J. Appl. Mech., 60(2), 371-375. https://doi.org/10.1115/1.2900803
  10. Fanning, P.J. and Boothby, T.E. (2001), "Three-dimensional modelling and full-scale testing of stone arch bridges", Comput. Struct., 79(29), 2645-2662. https://doi.org/10.1016/S0045-7949(01)00109-2
  11. Frunzio, G., Monaco, M. and Gesualdo, A. (2001), "3D F.E.M analysis of a Roman arch bridge", Historical Constructions, Eds., P.B. Lourenco, P. Roca, Guimaraes, 591-597.
  12. Gonen, H., Dogan, M., Karacasu, M., Ozbasaran, H. and Gokdemir, H. (2013), "Structural failures in refrofit historical Murat masonry arch bridge", Eng. Fail. Anal., 35, 334-342. https://doi.org/10.1016/j.engfailanal.2013.02.024
  13. Lourenco, P.B. (1996), "Computational strategies for masonry structures", Ph.D. Thesis, Delft Technical University of Technology, The Netherlands.
  14. Li, T. and Atamturktur, S. (2014), "Fidelity and Robustness of detailed micro modeling, simplified micro modeling, and macro modeling techniques for a masonry dome", J. Perform. Constr. Facil., 28(3), 480-490. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000440
  15. Lu, W.R., Wang, M. and Liu, X.J. (2011), "Numerical analysis of masonry under compression via micro-model", Adv. Mater. Res. Trans Tech Pub., 243, 1360-1365.
  16. Muvafik, M. (2014), "Field investigation and seismic analysis of a historical brick masonry minaret damaged during the Van earthquakes in 2011", Earthq. Struct., 6(5), 457-452. https://doi.org/10.12989/eas.2014.6.5.457
  17. Ilerisoy, Z.Y. and Soyluk, A. (2012), "Impact of shallow earthquakes on the Sehzade Mehmet mosque", Gradevinar, 64(9), 735-740.
  18. Pela, L., Aprile, A. and Benedetti, A. (2009), "Seismic assessment of masonry arch bridges", Eng. Struct., 31(8), 1777-1788. https://doi.org/10.1016/j.engstruct.2009.02.012
  19. Pela, L., Aprileb, A. and Benedettic, A. (2013), "Comparison of seismic assessment procedures for masonry arch bridges", Constr. Build. Mater., 38, 381-394. https://doi.org/10.1016/j.conbuildmat.2012.08.046
  20. Preciado, A., Bartoli, G. and Budelmann, H. (2015), "Fundamental aspects on the seismic vulnerability of ancient masonry towers and retrofitting techniques", Earthq. Struct., 9(2), 339-352. https://doi.org/10.12989/eas.2015.9.2.339
  21. Radnic, J., Harapin, A., Smilovic, M., Grgic, N. and Glibic, M. (2012), "Static and dynamic analysis of the old stone bridge in Mostar", Gradevinar, 8, 655-665.
  22. Rots, J.G. (1991), "Numerical simulation of cracking in structural masonry", Heron, 36(2), 49-63.
  23. Sevim, B., Bayraktar, A., Altunisik, A.C., Atamturktur, S. and Birinci, F. (2011a), "Assessment of nonlinear seismic performance of a restored historical arch bridge using ambient vibrations", Nonlin. Dyn., 63(4), 755-770. https://doi.org/10.1007/s11071-010-9835-y
  24. Sevim, B., Bayraktar, A., Altunisik, A.C., Atamturktur, S. and Birinci, F. (2011b), "Finite element model calibration effects on the earthquake response of masonry arch bridges", Finite Element. Anal. Des., 47(7), 621-634. https://doi.org/10.1016/j.finel.2010.12.011
  25. SeismoArtif Version 1 (2013).
  26. Toker, S. and Unay, A.I. (2004), "Mathematical modelling and finite element analysis of masonry arch bridges", G.U. J. Sci., 17(2), 129-139.
  27. Turkish Earthquake Code (TEC, 2007), Ministry of Public Works and Settlement, Ankara.
  28. Ural, A. (2005), "Finite element analysis of historical arch bridge", International Earthquake Symposium, Kocaeli, Turkey.
  29. Wang, J. and Melbourne, C. (2007), "Finite element analyses of soil-structure interaction in masonry arch bridges", ARCH'07-5th International Conference on Arch Bridges, 515-523.
  30. William, K.J. and Warnke, E.P. (1975), "Constitutive model for the triaxial behaviour of concrete", Proceeding of the International Association for Bridge and Structural Engineering, ISMES, Bergamo, Italy.
  31. Zampieri, P., Zanini, M.A. and Modena, C. (2015), "Simplified seismic assessment of multi-span masonry arch bridges", Bull. Earthq. Eng., 13(9), 2629-2646. https://doi.org/10.1007/s10518-015-9733-2

Cited by

  1. Nonlinear seismic performance of a 12th century historical masonry bridge under different earthquake levels vol.79, 2017, https://doi.org/10.1016/j.engfailanal.2017.05.017
  2. Failure analysis of masonry arch bridges subject to local pier scour vol.79, 2017, https://doi.org/10.1016/j.engfailanal.2017.05.028
  3. Collapse mechanisms of masonry arches with settled springing vol.156, 2018, https://doi.org/10.1016/j.engstruct.2017.11.048
  4. Investigation on seismic isolation retrofit of a historical masonry structure vol.16, pp.4, 2016, https://doi.org/10.12989/eas.2019.16.4.501
  5. Minimum cost strengthening of existing masonry arch railway bridges vol.75, pp.2, 2016, https://doi.org/10.12989/sem.2020.75.2.271
  6. In situ dynamic investigation on the historic "İskenderpaşa" masonry mosque with non-destructive testing vol.26, pp.1, 2016, https://doi.org/10.12989/sss.2020.26.1.001
  7. The probabilistic seismic assessment of aged concrete arch bridges: The role of soil-structure interaction vol.28, pp.None, 2020, https://doi.org/10.1016/j.istruc.2020.09.038
  8. Investigation on Seismic Behavior of Historical Tokatlı Bridge under Near-Fault Earthquakes vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/5596760