DOI QR코드

DOI QR Code

Characteristic Analysis for the Reduction Detent Force of Double-sided Slotted Type Permanent Magnet Linear Generator for Wave Energy Conversion

파력에너지 변환용 양측식 슬롯티드 타입 선형 발전기의 디텐트력 저감을 위한 특성해석

  • Seo, Sung-Won (Department of Electrical Engineering, Chungnam National University) ;
  • Choi, Jang-Young (Department of Electrical Engineering, Chungnam National University) ;
  • Koo, Min-Mo (Department of Electrical Engineering, Chungnam National University) ;
  • Park, Hyung-Il (Department of Electrical Engineering, Chungnam National University) ;
  • Hong, Keyyong (Offshore Plant Research Division, Korea Research Institute of Ships & Ocean Engineering) ;
  • Kim, Kyong-Hwan (Offshore Plant Research Division, Korea Research Institute of Ships & Ocean Engineering)
  • Received : 2016.01.22
  • Accepted : 2016.02.15
  • Published : 2016.02.29

Abstract

This study considered the reduction of the detent force of a permanent magnet linear synchronous generator (PMLSG). The PMLSG has a relatively large magnetic air gap. Thus, a slotted type of stator structure is generally employed. Furthermore, the detent force, which is caused by energy imbalances owing to the interaction between tooth-slot structures and the permanent magnets (PMs), must be minimized for start-up operation. Therefore, in this paper, the methods of auxiliary teeth and a notch in the teeth are applied to reduce the detent force.

본 논문은 파력에너지 변환용 양측식 슬롯티드 타입 선형 발전기의 디텐트력 저감을 위한 방법을 제시하였다. 양측식 선형 발전기는 비교적 큰 공극을 갖는다. 그렇기 때문에 일반적으로 선형기는 슬롯 구조를 갖는다. 이때의 디텐트력은 선형 발전기의 치/슬롯과 영구자석 사이에 발생하는 힘으로 불필요한 에너지원으로 작용한다. 따라서, 본 논문에서는 슬롯구조를 갖는 선형 기기의 디텐트력을 줄이기 위한 세가지 방법인 보조치, 노치적용을 제시하고 유한요소해석법을 이용하여 본 연구의 타당성을 입증하였다.

Keywords

References

  1. H. Polinder, F. F. A. van der Pijl, G. J. de Vilder, and P. J. Tavner, IEEE Trans. Energy. Conv. 21, 543 (2006).
  2. Y. Amara, J. B. Wang, and D. Howe, IEEE Trans. Energy Conv. 20, 761 (2005). https://doi.org/10.1109/TEC.2005.853732
  3. M. Leijon, H. Bernhoff, O. Agren, J. Isberg, J. Sundberg, M. Berg, K. Karlsson, and A. Wolfbrandt, IEEE Trans. Energy Conv. 20, 219 (2005). https://doi.org/10.1109/TEC.2004.827709
  4. M. Inoue and H. Sato, IEEE Trans, Magn. 36, 1890 (2000). https://doi.org/10.1109/20.877814
  5. T. Ishikawa and G. Slemon, IEEE Trans, Magn. 29, 2028 (1993). https://doi.org/10.1109/20.250808
  6. Z. Q. Zhu and D. Howe, IEEE Trans Magn. 28, 1371 (1992). https://doi.org/10.1109/20.123947
  7. Z. Q. Zhu, Z. P. Xia, D. Howe, and P. H. Mellor, IEE Proc. Elect. Eng. B-144, 227 (1997).
  8. D. W. Chung and Y. M. You, J. Magn. 19, 273 (2014). https://doi.org/10.4283/JMAG.2014.19.3.273
  9. D. W. Chung and Y. M. You, J. Magn. 20, 176 (2015). https://doi.org/10.4283/JMAG.2015.20.2.176
  10. Y. Chen, S. Chen, Z. Q. Zhu, D. Howe, and Y. Y. Ye, IEEE Trans. Magn. 42, 3416 (2006). https://doi.org/10.1109/TMAG.2006.879437
  11. C.-L. Chiu, Y.-T. Chen, and W.-S. Jhang, IEEE Trans. Magn. 44, 2317 (2008). https://doi.org/10.1109/TMAG.2008.2000761
  12. D.-R. Huang, T.-F. Ying, S.-J. Wang, and C.-m. Zhou, IEEE Trans. Magn. 34, 2075 (1998). https://doi.org/10.1109/20.706802
  13. D. R. Huang, C. Y. Fan, S. J. Wang, H. P. Pan, T. F. Ying, C. M. Chao, and Eric G. Lean, IEEE Trans. Magn. 35, 839 (1999). https://doi.org/10.1109/20.753795
  14. A. Hamler and B. Hribernik, IEEE Trans. Magn. 32, 1545 (1996). https://doi.org/10.1109/20.497545
  15. Y. U. Park, J. H. Cho, S. H. Rhyu, and D. K. Kim, J. Magn. 18, 114 (2013).
  16. J. H. Kim, J. M. Seo, H. K. Jung, and C. Y. Won, J. Magn. 19, 411 (2014). https://doi.org/10.4283/JMAG.2014.19.4.411