DOI QR코드

DOI QR Code

Fe-Si-Cr 분말합금의 열처리 효과

Effects of Annealing of Gas-atomized Fe-Si-Cr Powder

  • 투고 : 2015.12.21
  • 심사 : 2016.02.11
  • 발행 : 2016.02.29

초록

전기비저항이 높아 1 MHz 이상 고주파용 코어재료로 적합한 Fe-9%Si-2%Cr 합금분말의 열처리 온도에 따른 투자율 거동과 규칙-비규칙 전이에 대해 연구하였다. 분무과정에서 B2 규칙상의 생성이 억제되지 않았으며, $550^{\circ}C$ 이상에서 열처리 했을 경우 $DO_3$ 상의 회절선을 검출할 수 있었다. 열처리 온도가 증가할수록 격자상수와 보자력은 감소하였으나 $450^{\circ}C$에서 보자력의 갑작스런 큰 증가가 있었다. $150^{\circ}C$의 비교적 낮은 열처리 온도에서 가장 높은 투자율을 나타내었고, 이후 열처리 온도가 증가할수록 투자율은 감소하였다. 이상의 거동은 $DO_3$ 규칙상의 생성과 이에 따른 비저항의 변화로 설명할 수 있었다.

Effects of annealing of the gas-atomized Fe-9%Si-2%Cr powder which is suitable for high frequency application in mobile devices because of its high electrical resistivity were studied with an emphasis on the order-disorder phase transition. The formation of B2 ordered phase could not be suppressed during atomization process. When the powder was annealed at a temperature higher than $550^{\circ}C$ the peak diffracted from $DO_3$ phase could be detected. With increasing annealing temperature lattice parameter and coercivity decreased. An interesting phenomenon was an abrupt increment of coercivity in the powder annealed at $450^{\circ}C$. Highest permeability could be shown in the powder annealed at a relative low temperature of $150^{\circ}C$ and then the permeability decreased with annealing temperature. The above-mentioned results could be successfully explained by both the formation of $DO_3$ ordered phases and the change of electrical resistivity of the Fe-Si-Cr powder which was also originated from the phase transition.

키워드

참고문헌

  1. F. Gonzalez and Y. Houbaert, Rev. Metal 49, 178 (2013). https://doi.org/10.3989/revmetalm.1223
  2. O. Kubaschewski, Iron-binary Phase Diagrams, Springer-Verlag, Berlin (1982).
  3. A. I. Al-Sharif, M. Abu-Jafar, and A. Qteish, J. Phys.: Condens. Matter. 13, 2807 (2001). https://doi.org/10.1088/0953-8984/13/12/305
  4. K. Hilfrich, W. Kolker, W. Petry, O. Scharpf, and E. Nembach, Scripta Metallurgica et Materialia 24, 39 (1990). https://doi.org/10.1016/0956-716X(90)90563-V
  5. K. Narita and M. Enokizono, IEEE T. Magn. 15, 911 (1979). https://doi.org/10.1109/TMAG.1979.1060174
  6. B. Viala, J. Degauque, M. Fagot, M. Baricco, E. Ferrara, and F. Fiorillo, Mater. Sci. Eng. A 212, 62 (1996). https://doi.org/10.1016/0921-5093(96)10188-X
  7. J. H. Yu, J. S. Shin, J. S. Bae, Z. H. Lee, T. D. Lee, and H. M. Lee, J. Korean Inst. Metals and Mater. 39, 394 (2001).
  8. J. S. Shin, J. S. Bae, H. J. Kim, H. M. Lee, T. D. Lee, E. J. Lavernia, and Z. H. Lee, Mater. Sci. Eng. A 407, 282 (2005). https://doi.org/10.1016/j.msea.2005.07.012
  9. Y. Liu, Z. Liu, S. Guo, Y. Du, B. Huang, J. Huang, S. Chen, and F. Liu, Intermetallics 13, 393 (2005). https://doi.org/10.1016/j.intermet.2004.07.026
  10. D. Singh and S. Dangwal, J. Mater. Sci. 41, 3853 (2006). https://doi.org/10.1007/s10853-006-6652-2
  11. H. J. Jung, Ph.D. Thesis, Hanyang University, Korea (2012).
  12. W. Ciurzynska, J. Zbroszczyk, J. Olszewski, J. Frackowiak, and K. Narita, J. Magn. Magn. Mater. 133, 351 (1994). https://doi.org/10.1016/0304-8853(94)90565-7
  13. D. Bouchara, M. Fagot, J. Detauque, and J. Bras, J. Magn. Magn. Mater. 83, 377 (1990). https://doi.org/10.1016/0304-8853(90)90554-4
  14. F. Faudot, J. F. Rialland, and J. Bigot, Physica Scripta 39, 263 (1989). https://doi.org/10.1088/0031-8949/39/2/013
  15. D. Ruiz, T. Ros-Yanez, L. Vandenbossche, L. Dupre, R. E. Vandenberghe, and Y. Houbaert, J. Magn. Magn. Mater. 290, 1423 (2005).