DOI QR코드

DOI QR Code

Evaluation of Resistance to Ralstonia solanacearum in Tomato Genetic Resources at Seedling Stage

  • Kim, Sang Gyu (National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration) ;
  • Hur, On-Sook (National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration) ;
  • Ro, Na-Young (National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration) ;
  • Ko, Ho-Cheol (National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration) ;
  • Rhee, Ju-Hee (National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration) ;
  • Sung, Jung Sook (National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration) ;
  • Ryu, Kyoung-Yul (National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Sok-Young (National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration) ;
  • Baek, Hyung Jin (National Agrobiodiversity Center, National Academy of Agricultural Science, Rural Development Administration)
  • Received : 2015.06.23
  • Accepted : 2015.09.10
  • Published : 2016.02.01

Abstract

Bacterial wilt of tomatoes caused by Ralstonia solanacearum is a devastating disease that limits the production of tomato in Korea. The best way to control this disease is using genetically resistant tomato plant. The resistance degree to R. solanacearum was evaluated for 285 tomato accessions conserved in the National Agrobiodiversity Center of Rural Development Administration. These accessions of tomato were originated from 23 countries. Disease severity of tomato accessions was investigated from 7 days to 14 days at an interval of 7 days after inoculation of R. solanacearum under greenhouse conditions. A total of 279 accessions of tomato germplasm were susceptible to R. solanacearum, resulting in wilt and death in 70 to 90% of these plants. Two tomato accessions were moderately resistant to R. solanacearum. Only four accessions showed high resistance against R. solanacearum. No distinct symptom of bacterial wilt appeared on the resistant tomato germplasms for up to 14 days after inoculation of R. solanacearum. Microscopy of resistant tomato stems infected with R. solanacearum revealed limited bacterial spread with thickening of pit membrane and gum production. Therefore, these four resistant tomato germplasms could be used in tomato breeding program against bacterial wilt.

Keywords

References

  1. Acosta, J. C., Gilbert, J. C. and Quinon, V. L. 1964. Heritability of bacterial wilt resistance in tomato. Proc. Am. Soc. Hort. Sci. 84:455-462.
  2. Anith, K. N., Momol, M. T., Kloepper, J. W., Marois, J. J., Olson, S. M. and Jones, J. B. 2004. Efficacy of plant growth-promoting rhizobacteria, acibenzolar-S-methyl, and soil amendment for integrated management of bacterial wilt on tomato. Plant Dis. 88:669-673. https://doi.org/10.1094/PDIS.2004.88.6.669
  3. Beckman, C. H. 1987. The nature of wilt diseases of plants. APS press, St. Paul. MN. pp.
  4. Buddenhagen, I. and Kelman, A. 1964. Biological and physiological aspects of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 2:203-230. https://doi.org/10.1146/annurev.py.02.090164.001223
  5. Dahal, D., Heintz, D., Van Dorsselaer, A., Braun, H.-P. and Wydra, K. 2009. Pathogenesis and stress related, as well as metabolic proteins are regulated in tomato stems infected with Ralstonia solanacearum. Plant Physiol. Biochem. 47:838-846. https://doi.org/10.1016/j.plaphy.2009.05.001
  6. Dannon, E. A. and Wydra, K. 2004. Interaction between silicon amendment, bacterial wilt development and phenotype of Ralstonia solanacearum in tomato genotypes. Physiol. Mol. Plant Pathol. 64:233-243. https://doi.org/10.1016/j.pmpp.2004.09.006
  7. Darwin, S. C., Knapp, S. and Peralta, I. E. 2003. Taxonomy of tomatoes in the Galapagos Islands: native and introduced species of Solanum section Lycopersicon (Solanaceae). Syst. Biodivers. 1:29-53. https://doi.org/10.1017/S1477200003001026
  8. Diogo, R. V. C. and Wydra, K. 2007. Silicon-induced basal resistance in tomato against Ralstonia solanacearum is related to modification of pectic cell wall polysaccharide structure. Physiol. Mol. Plant Pathol. 70:120-129. https://doi.org/10.1016/j.pmpp.2007.07.008
  9. Grimault, V., Gélie, B., Lemattre, M., Prior, P. and Schmit, J. 1994. Comparative histology of resistant and susceptible tomato cultivars infected by Pseudomonas solanacearum. Physiol. Mol. Plant Pathol. 44:105-123. https://doi.org/10.1016/S0885-5765(05)80105-5
  10. Grimault, V. and Prior, P. 1993. Bacterial wilt resistance in tomato associated with tolerance of vascular tissues to Pseudomonas solanacearum. Plant Pathol. 42:589-594. https://doi.org/10.1111/j.1365-3059.1993.tb01539.x
  11. Hayward, A. C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29:65-87. https://doi.org/10.1146/annurev.py.29.090191.000433
  12. Ishihara, T., Mitsuhara, I., Takahashi, H. and Nakaho, K. 2012. Transcriptome analysis of quantitative resistance-specific response upon Ralstonia solanacearum infection in tomato. PLoS One 7:e46763. https://doi.org/10.1371/journal.pone.0046763
  13. Kang, Z., Wang, Q., Zhang, H. and Qi, Q. 2008. Construction of a stress-induced system in Escherichia coli for efficient polyhydroxyalkanoates production. Appl. Microbiol. Biotechnol. 79:203-208. https://doi.org/10.1007/s00253-008-1428-z
  14. Kelman, A. 1954. The relationship of pathogenicity of Pseudomonas solanacearum to colony appearance in a tetrazolium medium. Phytopathology 44:693-695.
  15. Lee, Y. H., Kim, S. H., Yun, B.-W. and Hong, J. K. 2014. Altered cultivar resistance of kimchi cabbage seedlings mediated by salicylic acid, jasmonic acid and ethylene. Plant Pathol. J. 30:323-329. https://doi.org/10.5423/PPJ.NT.06.2014.0053
  16. Lim, Y.-S., Lee, M.-J., Cheung, J.-D., Rew, Y.-H. and Kim, B.- S. 2008. Occurrence and biovar classification of bacterial wilt caused by Ralstonia solanacearum in eggplant (Solanum melongena). Res. Plant Dis. 14:10-14 (in Korean). https://doi.org/10.5423/RPD.2008.14.1.010
  17. Nakaho, K., Hibino, H. and Miyagawa, H. 2000. Possible mechanisms limiting movement of Ralstonia solanacearum in resistant tomato tissues. J. Phytopathol. 148:181-190. https://doi.org/10.1046/j.1439-0434.2000.00476.x
  18. Peralta, I. E. and Spooner, D. M. 2007. History, origin and early cultivation of tomato (Solanaceae). In: Genetic improvement of solanaceous crops, eds. by M. K. Razdan and A. K. Mattoo, pp. 1-24. Science Publishers, Enfield, NH, USA.
  19. Prior, P., Bart, S., Leclercq, S., Darrasse, A. and Anais, G. 1996. Resistance to bacterial wilt in tomato as discerned by spread of Pseudomonas (Burholderia) solanacearum in the stem tissues. Plant Pathol. 45:720-726. https://doi.org/10.1046/j.1365-3059.1996.d01-9.x
  20. Rivard, C. L. and Louws, F. J. 2008. Grafting to manage soilborne diseases in heirloom tomato production. HortScience 43:2104-2111.
  21. Rivard, C. L., O'connell, S., Peet, M. M., Welker, R. M. and Louws, F. J. 2012. Grafting tomato to manage bacterial wilt caused by Ralstonia solanacearum in the southeastern United States. Plant Dis. 96:973-978. https://doi.org/10.1094/PDIS-12-10-0877
  22. Roberts, D. P., Denny, T. P. and Schell, M. A. 1988. Cloning of the egl gene of Pseudomonas solanacearum and analysis of its role in phytopathogenicity. J. Bacteriol. 170:1445-1451. https://doi.org/10.1128/jb.170.4.1445-1451.1988
  23. Son, S.-H., Khan, Z., Kim, S. G. and Kim, Y. H. 2009. Plant growth-promoting rhizobacteria, Paenibacillus polymyxa and Paenibacillus lentimorbus suppress disease complex caused by root-knot nematode and fusarium wilt fungus. J. Appl. Microbiol. 107:524-532. https://doi.org/10.1111/j.1365-2672.2009.04238.x
  24. Spurr, A. R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26:31-43. https://doi.org/10.1016/S0022-5320(69)90033-1
  25. Vasse, J., Frey, P. and Trigalet, A. 1995. Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Mol. Plant-Microbe Interact. 8:241-251. https://doi.org/10.1094/MPMI-8-0241
  26. Wallis, F. M. and Truter, S. J. 1978. Histopathology of tomato plants infected with Pseudomonas solanacearum, with emphasis on ultrastructure. Physiol. Plant Pathol. 13:307-317. https://doi.org/10.1016/0048-4059(78)90047-4
  27. Wang, J.-F., Hanson, P. M. and Barens, J. A. 1998. Worldwide evaluation of international set of resistance sources to bacterial wilt in tomato. In: Bacterial wilt disease: Molecular and Ecological Aspects. eds. by P. Prior, C. Allen, and J. Elphinstone, pp. 269-275. Springer, Berlin, Germay.
  28. Wang, J.-F., Olivier, J., Thoquet, P., Mangin, B., Sauviac, L. and Grimsley, N. H. 2000. Resistance of tomato line Hawaii7996 to Ralstonia solanacearum Pss4 in Taiwan is controlled mainly by a major strain-specific locus. Mol. Plant-Microbe Interact. 13:6-13. https://doi.org/10.1094/MPMI.2000.13.1.6

Cited by

  1. Effector-assisted breeding for bacterial wilt resistance in horticultural crops vol.57, pp.5, 2016, https://doi.org/10.1007/s13580-016-0191-9
  2. Identification and Management Challenges Associated with Ralstonia solanacearum (Smith), Causal Agent of Bacterial Wilt Disease of Tomato in Sub-Saharan Africa vol.20, pp.11, 2017, https://doi.org/10.3923/pjbs.2017.530.542
  3. pp.1314-3530, 2018, https://doi.org/10.1080/13102818.2018.1533431
  4. Evaluation of Solanum peruvianum (sensu lato) germplasm to a standard Ralstonia solanacearum race 1/biovar 1 isolate and to a novel ‘Hawaii 7996’ resistance-overcoming race 3/biovar 2A isolate from Brazil vol.43, pp.5, 2018, https://doi.org/10.1007/s40858-018-0255-8