DOI QR코드

DOI QR Code

Sirt1 and the Mitochondria

  • Tang, Bor Luen (Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore)
  • Received : 2015.11.24
  • Accepted : 2015.12.31
  • Published : 2016.02.29

Abstract

Sirt1 is the most prominent and extensively studied member of sirtuins, the family of mammalian class III histone deacetylases heavily implicated in health span and longevity. Although primarily a nuclear protein, Sirt1's deacetylation of Peroxisome proliferator-activated receptor Gamma Coactivator-$1{\alpha}$ (PGC-$1{\alpha}$) has been extensively implicated in metabolic control and mitochondrial biogenesis, which was proposed to partially underlie Sirt1's role in caloric restriction and impacts on longevity. The notion of Sirt1's regulation of PGC-$1{\alpha}$ activity and its role in mitochondrial biogenesis has, however, been controversial. Interestingly, Sirt1 also appears to be important for the turnover of defective mitochondria by mitophagy. I discuss here evidences for Sirt1's regulation of mitochondrial biogenesis and turnover, in relation to PGC-$1{\alpha}$ deacetylation and various aspects of cellular physiology and disease.

Keywords

References

  1. Albani, D., Polito, L., Batelli, S., De Mauro, S., Fracasso, C., Martelli, G., Colombo, L., Manzoni, C., Salmona, M., Caccia, S., et al. (2009). The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alphasynuclein or amyloid-beta (1-42) peptide. J. Neurochem. 110, 1445-1456. https://doi.org/10.1111/j.1471-4159.2009.06228.x
  2. Amat, R., Planavila, A., Chen, S.L., Iglesias, R., Giralt, M., and Villarroya, F. (2009). SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-gamma Co-activator- 1alpha (PGC-1alpha) gene in skeletal muscle through the PGC- 1alpha autoregulatory loop and interaction with MyoD. J. Biol. Chem. 284, 21872-21880. https://doi.org/10.1074/jbc.M109.022749
  3. Anderson, R.M., Barger, J.L., Edwards, M.G., Braun, K.H., O'Connor, C.E., Prolla, T.A., and Weindruch, R. (2008). Dynamic regulation of PGC-1alpha localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response. Aging Cell. 7, 101-111. https://doi.org/10.1111/j.1474-9726.2007.00357.x
  4. Aquilano, K., Vigilanza, P., Baldelli, S., Pagliei, B., Rotilio, G., and Ciriolo, M.R. (2010). Peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC-1alpha) and sirtuin 1 (SIRT1) reside in mitochondria: possible direct function in mitochondrial biogenesis. J. Biol. Chem. 285, 21590-21599. https://doi.org/10.1074/jbc.M109.070169
  5. Aquilano, K., Baldelli, S., Pagliei, B., and Ciriolo, M.R. (2012). Extranuclear localization of SIRT1 and PGC-$1{\alpha}$: an insight into possible roles in diseases associated with mitochondrial dysfunction. Curr. Mol. Med. 13, 140-154. https://doi.org/10.2174/1566524011307010140
  6. Austin, S., and St-Pierre, J. (2012). $PGC1{\alpha}$ and mitochondrial metabolism-- emerging concepts and relevance in ageing and neurodegenerative disorders. J. Cell Sci. 125, 4963-4971. https://doi.org/10.1242/jcs.113662
  7. Bai, P., Canto, C., Oudart, H., Brunyanszki, A., Cen, Y., Thomas, C., Yamamoto, H., Huber, A., Kiss, B., Houtkooper, R.H., et al. (2011). PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13, 461-468. https://doi.org/10.1016/j.cmet.2011.03.004
  8. Barger, P.M., Browning, A.C., Garner, A.N., and Kelly, D.P. (2001). p38 mitogen-activated protein kinase activates peroxisome proliferator- activated receptor alpha: a potential role in the cardiac metabolic stress response. J Biol. Chem. 276, 44495-44501. https://doi.org/10.1074/jbc.M105945200
  9. Bogenhagen, D.F. (2012). Mitochondrial DNA nucleoid structure. Biochim. Biophys. Acta. 1819, 914-920. https://doi.org/10.1016/j.bbagrm.2011.11.005
  10. Brachmann, C.B., Sherman, J.M., Devine, S.E., Cameron, E.E., Pillus, L., and Boeke, J.D. (1995). The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 9, 2888- 2902. https://doi.org/10.1101/gad.9.23.2888
  11. Brunet, A., Sweeney, L.B., Sturgill, J.F., Chua, K.F., Greer, P.L., Lin, Y., Tran, H., Ross, S.E., Mostoslavsky, R., Cohen, H.Y., Hu, L.S., Cheng, H.L., Jedrychowski, M.P., Gygi, S.P., Sinclair, D.A., Alt, F.W., and Greenberg, M.E. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011-2015. https://doi.org/10.1126/science.1094637
  12. Burnett, C. Valentini, S., Cabreiro, F., Goss, M., Somogyvari, M., Piper, M.D., Hoddinott, M., Sutphin, G.L., Leko, V., McElwee, J.J., et al. (2011). Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477, 482-485. https://doi.org/10.1038/nature10296
  13. Byles, V., Chmilewski, L.K., Wang, J., Zhu, L., Forman, L.W., Faller, D.V., and Dai, Y. (2010). Aberrant cytoplasm localization and protein stability of SIRT1 is regulated by PI3K/IGF-1R signaling in human cancer cells. Int. J. Biol. Sci. 6, 599-612.
  14. Campbell, C.T., Kolesar, J.E., and Kaufman, B.A. (2012). Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim. Biophys. Acta 1819, 921-929. https://doi.org/10.1016/j.bbagrm.2012.03.002
  15. Canto, C., and Auwerx, J. (2009). Caloric restriction, SIRT1 and longevity. Trends Endocrinol. Metab. 20, 325-331. https://doi.org/10.1016/j.tem.2009.03.008
  16. Canto, C., Gerhart-Hines, Z., Feige, J.N., Lagouge, M., Noriega, L., Milne, J.C., Elliott, P.J., Puigserver, P., and Auwerx, J. (2009). AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056-1060. https://doi.org/10.1038/nature07813
  17. Canto, C., Jiang, L.Q., Deshmukh, A.S., Mataki, C., Coste, A., Lagouge, M., Zierath, J.R., and Auwerx, J. (2010). Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11, 213-219. https://doi.org/10.1016/j.cmet.2010.02.006
  18. Cheng, H.L., Mostoslavsky, R., Saito, S., Manis, J.P., Gu, Y., Patel, P., Bronson, R., Appella, E., Alt, F.W., and Chua, K.F. (2003). Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl. Acad. Sci. USA 100, 10794-10799. https://doi.org/10.1073/pnas.1934713100
  19. Civitarese, A.E., Carling, S., Heilbronn, L.K., Hulver, M.H., Ukropcova, B., Deutsch, W.A., Smith, S.R., Ravussin, E., and CALERIE Pennington Team (2007). Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 4, e76. https://doi.org/10.1371/journal.pmed.0040076
  20. Cui, L., Jeong, H., Borovecki, F., Parkhurst, C.N., Tanese, N., and Krainc, D. (2006). Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127, 59-69. https://doi.org/10.1016/j.cell.2006.09.015
  21. Dasgupta, B., and Milbrandt, J. (2007). Resveratrol stimulates AMP kinase activity in neurons. Proc. Natl. Acad. Sci. USA 104, 7217- 7222. https://doi.org/10.1073/pnas.0610068104
  22. Dinkova-Kostova, A.T., Baird, L., Holmstrom, K.M., Meyer, C.J., and Abramov, A.Y. (2015). The spatiotemporal regulation of the Keap1-Nrf2 pathway and its importance in cellular bioenergetics. Biochem. Soc. Trans. 43, 602-610. https://doi.org/10.1042/BST20150003
  23. Dominy, J.E., Lee, Y., Gerhart-Hines, Z., and Puigserver, P. (2010). Nutrient-dependent regulation of PGC-1alpha's acetylation state and metabolic function through the enzymatic activities of Sirt1/GCN5. Biochim. Biophys. Acta 1804, 1676-1683. https://doi.org/10.1016/j.bbapap.2009.11.023
  24. Donmez, G., Arun, A., Chung, C.Y., McLean, P.J., Lindquist, S., and Guarente, L. (2012). SIRT1 protects against ${\alpha}$-synuclein aggregation by activating molecular chaperones. J. Neurosci. 32, 124- 132. https://doi.org/10.1523/JNEUROSCI.3442-11.2012
  25. Dumont, M., Stack, C., Elipenahli, C., Jainuddin, S., Launay, N., Gerges, M., Starkova, N., Starkov, A.A., Calingasan, N.Y., Tampellini, D., Pujol, A., and Beal, M.F. (2014). PGC-$1{\alpha}$ overexpression exacerbates ${\beta}$-amyloid and tau deposition in a transgenic mouse model of Alzheimer's disease. FASEB J. 28, 1745-1755. https://doi.org/10.1096/fj.13-236331
  26. Ebrahim, A.S., Ko, L.W., and Yen, S.H. (2010). Reduced expression of peroxisome-proliferator activated receptor gamma coactivator- 1alpha enhances alpha-synuclein oligomerization and down regulates AKT/GSK3beta signaling pathway in human neuronal cells that inducibly express alpha-synuclein. Neurosci. Lett. 473, 120-125. https://doi.org/10.1016/j.neulet.2010.02.034
  27. Eiyama, A., and Okamoto, K. (2015). PINK1/Parkin-mediated mitophagy in mammalian cells. Curr. Opin. Cell Biol. 33, 95-101. https://doi.org/10.1016/j.ceb.2015.01.002
  28. Fang, E.F., Scheibye-Knudsen, M., Brace, L.E., Kassahun, H., SenGupta, T., Nilsen, H., Mitchell, J.R., Croteau, D.L., and Bohr, V.A. (2014). Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell 157, 882-896. https://doi.org/10.1016/j.cell.2014.03.026
  29. Feige, J.N., Lagouge, M., Canto, C., Strehle, A., Houten, S.M., Milne, J.C., Lambert, P.D., Mataki, C., Elliott, P.J., and Auwerx, J. (2008). Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 8, 347-358. https://doi.org/10.1016/j.cmet.2008.08.017
  30. Ferber, E.C., Peck, B., Delpuech, O., Bell, G.P., East, P., and Schulze, A. (2012). FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ. 19, 968-979. https://doi.org/10.1038/cdd.2011.179
  31. Garcia-Roves, P.M., Osler, M.E., Holmstrom, M.H., and Zierath, J.R. (2008). Gain-of-function R225Q mutation in AMP-activated protein kinase gamma3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle. J. Biol. Chem. 283, 35724-35734. https://doi.org/10.1074/jbc.M805078200
  32. Gerhart-Hines, Z., Rodgers, J.T., Bare, O., Lerin, C., Kim, S.H., Mostoslavsky, R., Alt, F.W., Wu, Z., and Puigserver, P. (2007). Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 26, 1913-1923. https://doi.org/10.1038/sj.emboj.7601633
  33. Ghosh, H.S., McBurney, M., and Robbins, P.D. (2010). SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One 5, e9199. https://doi.org/10.1371/journal.pone.0009199
  34. Gomes, A.P., Price, N.L., Ling, A.J.Y., Moslehi, J.J., Montgomery, M.K., Rajman, L., White, J.P., Teodoro, J.S., Wrann, C.D., Hubbard, B.P., et al. (2013). Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624-1638. https://doi.org/10.1016/j.cell.2013.11.037
  35. Gregoretti, I.V., Lee, Y.M., and Goodson, H.V. (2004). Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol. 338, 17-31. https://doi.org/10.1016/j.jmb.2004.02.006
  36. Guarente, L. (2011). Sirtuins, aging, and metabolism. Cold Spring Harb. Symp. Quant. Biol. 76, 81-90. https://doi.org/10.1101/sqb.2011.76.010629
  37. Gurd, B.J. (2011). Deacetylation of PGC-$1{\alpha}$ by SIRT1: importance for skeletal muscle function and exercise-induced mitochondrial biogenesis. Appl. Physiol. Nutr. Metab. 36, 589-597. https://doi.org/10.1139/h11-070
  38. Gurd, B.J., Yoshida, Y., Lally, J., Holloway, G.P., and Bonen, A. (2009). The deacetylase enzyme SIRT1 is not associated with oxidative capacity in rat heart and skeletal muscle and its overexpression reduces mitochondrial biogenesis. J. Physiol. 587, 1817-1828. https://doi.org/10.1113/jphysiol.2008.168096
  39. Gurd, B.J., Yoshida, Y., McFarlan, J.T., Holloway, G.P., Moyes, C.D., Heigenhauser, G.J.F., Spriet, L., and Bonen, A. (2011). Nuclear SIRT1 activity, but not protein content, regulates mitochondrial biogenesis in rat and human skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R67-R75. https://doi.org/10.1152/ajpregu.00417.2010
  40. Haigis, M.C., and Guarente, L.P. (2006). Mammalian sirtuins-- emerging roles in physiology, aging, and calorie restriction. Genes Dev. 20, 2913-2921. https://doi.org/10.1101/gad.1467506
  41. Haigis, M.C., and Sinclair, D.A. (2010). Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 5, 253- 295. https://doi.org/10.1146/annurev.pathol.4.110807.092250
  42. Hallows, W.C., Lee, S., and Denu, J.M. (2006). Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. USA 103, 10230-10235. https://doi.org/10.1073/pnas.0604392103
  43. Han, M.K., Song, E.K., Guo, Y., Ou, X., Mantel, C., and Broxmeyer, H.E. (2008). SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell 2, 241-251. https://doi.org/10.1016/j.stem.2008.01.002
  44. Hancock, C.R., Han, D.H., Higashida, K., Kim, S.H., and Holloszy, J.O. (2011). Does calorie restriction induce mitochondrial biogenesis? A reevaluation. FASEB J. 25, 785-791. https://doi.org/10.1096/fj.10-170415
  45. Hardie, D.G. (2011). Sensing of energy and nutrients by AMPactivated protein kinase. Am J. Clin. Nutr. 93, 891S-8916. https://doi.org/10.3945/ajcn.110.001925
  46. Hathorn, T., Snyder-Keller, A., and Messer, A. (2011). Nicotinamide improves motor deficits and upregulates PGC-$1{\alpha}$ and BDNF gene expression in a mouse model of Huntington's disease. Neurobiol. Dis. 41, 43-50. https://doi.org/10.1016/j.nbd.2010.08.017
  47. Herranz, D., Munoz-Martin, M., Canamero, M., Mulero, F., Martinez- Pastor, B., Fernandez-Capetillo, O., and Serrano, M. (2010). Sirt1 improves healthy ageing and protects from metabolic syndrome- associated cancer. Nat. Commun. 1, 3.
  48. Higashida, K., Kim, S.H., Jung, S.R., Asaka, M., Holloszy, J.O., and Han, D.H. (2013). Effects of resveratrol and SIRT1 on PGC-$1{\alpha}$ activity and mitochondrial biogenesis: A reevaluation. PLoS Biol. 11, e1001603. https://doi.org/10.1371/journal.pbio.1001603
  49. Hong, S., Zhao, B., Lombard, D.B., Fingar, D.C., and Inoki, K. (2014). Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation. J. Biol. Chem. 289, 13132- 13141. https://doi.org/10.1074/jbc.M113.520734
  50. Hou, X., Xu, S., Maitland-Toolan, K.A., Sato, K., Jiang, B., Ido, Y., Lan, F., Walsh, K., Wierzbicki, M., Verbeuren, T.J., et al. (2008). SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J. Biol. Chem. 283, 20015-20026. https://doi.org/10.1074/jbc.M802187200
  51. Howitz, K.T., Bitterman, K.J., Cohen, H.Y., Lamming, D.W., Lavu, S., Wood, J.G., Zipkin, R.E., Chung, P., Kisielewski, A., Zhang, L.L., et al. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191-196. https://doi.org/10.1038/nature01960
  52. Hubbard, B.P., Gomes, A.P., Dai, H., Li, J., Case, A.W., Considine, T., Riera, T.V., Lee, J.E., E, S.Y., Lamming, D.W., et al. (2013). Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 339, 1216-1219. https://doi.org/10.1126/science.1231097
  53. Jackson, M.D., and Denu, J.M. (2002). Structural identification of 2'- and 3'-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of beta -NAD+-dependent histone/protein deacetylases. J. Biol. Chem. 277, 18535-18544. https://doi.org/10.1074/jbc.M200671200
  54. Jacobs, K.M., Pennington, J.D., Bisht, K.S., Aykin-Burns, N., Kim, H.S., Mishra, M., Sun, L., Nguyen, P., Ahn, B.H., Leclerc, J., et al. (2008). SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression. Int. J. Biol. Sci. 4, 291-299.
  55. Jager, S., Handschin, C., St-Pierre, J., and Spiegelman, B.M. (2007). AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc. Natl. Acad. Sci. USA 104, 12017-12022. https://doi.org/10.1073/pnas.0705070104
  56. Jang, S.Y., Kang, H.T., and Hwang, E.S. (2012). Nicotinamideinduced mitophagy: event mediated by high NAD+/NADH ratio and SIRT1 protein activation. J. Biol. Chem. 287, 19304-19314. https://doi.org/10.1074/jbc.M112.363747
  57. Jin, Q., Yan, T., Ge, X., Sun, C., Shi, X., and Zhai, Q. (2007). Cytoplasm- localized SIRT1 enhances apoptosis. J. Cell. Physiol. 213, 88-97. https://doi.org/10.1002/jcp.21091
  58. Kaeberlein, M., McDonagh, T., Heltweg, B., Hixon, J., Westman, E.A., Caldwell, S.D., Napper, A., Curtis, R., DiStefano, P.S., Fields, S., et al. (2005). Substrate-specific activation of sirtuins by resveratrol. J. Biol. Chem. 280, 17038-17045. https://doi.org/10.1074/jbc.M500655200
  59. Kang, H.T., and Hwang, E.S. (2009). Nicotinamide enhances mitochondria quality through autophagy activation in human cells. Aging Cell 8, 426-438. https://doi.org/10.1111/j.1474-9726.2009.00487.x
  60. Kawai, Y., Garduno, L., Theodore, M., Yang, J., and Arinze, I.J. (2011). Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization. J. Biol. Chem. 286, 7629-7640. https://doi.org/10.1074/jbc.M110.208173
  61. Kim, H., Yang, J., Kim, M.J., Choi, S., Chung, J.R., Kim, J.M., Yoo, Y.H., Chung, J., and Koh, H. (2015). Tumor necrosis factor receptor- associated protein 1 (TRAP1) mutation and TRAP1 inhibitor gamitrinib-triphenylphosphonium (G-TPP) induce a forkhead box O (FOXO)-dependent cell protective signal from mitochondria. J. Biol. Chem. (in press).
  62. Koh, H., Kim, H., Kim, M.J., Park, J., Lee, H.J., and Chung, J. (2012). Silent information regulator 2 (Sir2) and Forkhead box O (FOXO) complement mitochondrial dysfunction and dopaminergic neuron loss in Drosophila PTEN-induced kinase 1 (PINK1) null mutant. J. Biol. Chem. 287, 12750-12758. https://doi.org/10.1074/jbc.M111.337907
  63. Kukidome, D., Nishikawa, T., Sonoda, K., Imoto, K., Fujisawa, K., Yano, M., Motoshima, H., Taguchi, T., Matsumura, T., and Araki, E. (2006). Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes 55, 120-127. https://doi.org/10.2337/diabetes.55.01.06.db05-0943
  64. La Spada, A.R. (2012). PPARGC1A/PGC-$1{\alpha}$, TFEB and enhanced proteostasis in Huntington disease: defining regulatory linkages between energy production and protein-organelle quality control. Autophagy 8, 1845-1847. https://doi.org/10.4161/auto.21862
  65. Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., et al. (2006). Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127, 1109-1122. https://doi.org/10.1016/j.cell.2006.11.013
  66. Lan, F., Cacicedo, J.M., Ruderman, N., and Ido, Y. (2008). SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J. Biol. Chem. 283, 27628-27635. https://doi.org/10.1074/jbc.M805711200
  67. Leick, L., Fentz, J., Bienso, R.S., Knudsen, J.G., Jeppesen, J., Kiens, B., Wojtaszewski, J.F.P., and Pilegaard, H. (2010). PGC- 1{alpha} is required for AICAR-induced expression of GLUT4 and mitochondrial proteins in mouse skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 299, E456-E465. https://doi.org/10.1152/ajpendo.00648.2009
  68. Li, X., Monks, B., Ge, Q., and Birnbaum, M.J. (2007). Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. Nature 447, 1012-1016. https://doi.org/10.1038/nature05861
  69. Lim, J.H., Lee, Y.M., Chun, Y.S., Chen, J., Kim, J.E., and Park, J.W. (2010). Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol. Cell 38, 864- 878. https://doi.org/10.1016/j.molcel.2010.05.023
  70. Liu, M., Wilk, S.A., Wang, A., Zhou, L., Wang, R.H., Ogawa, W., Deng, C., Dong, L.Q., and Liu, F. (2010). Resveratrol inhibits mTOR signaling by promoting the interaction between mTOR and DEPTOR. J. Biol. Chem. 285, 36387-36394. https://doi.org/10.1074/jbc.M110.169284
  71. Longo, V.D. (2009). Linking sirtuins, IGF-I signaling, and starvation. Exp. Gerontol. 44, 70-74. https://doi.org/10.1016/j.exger.2008.06.005
  72. Luo, J., Nikolaev, A.Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L., and Gu, W. (2001). Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107, 137-148. https://doi.org/10.1016/S0092-8674(01)00524-4
  73. McBurney, M.W., Yang, X., Jardine, K., Hixon, M., Boekelheide, K., Webb, J.R., Lansdorp, P.M., and Lemieux, M. (2003). The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol. Cell Biol. 23, 38-54. https://doi.org/10.1128/MCB.23.1.38-54.2003
  74. Meshkini, A., and Yazdanparast, R. (2012). Foxo3a targets mitochondria during guanosine 5'-triphosphate guided erythroid differentiation. Int. J. Biochem. Cell Biol. 44, 1718-1728. https://doi.org/10.1016/j.biocel.2012.06.023
  75. Michishita, E., Park, J.Y., Burneskis, J.M., Barrett, J.C., and Horikawa, I. (2005). Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell. 16, 4623-4635. https://doi.org/10.1091/mbc.E05-01-0033
  76. Mishra, P., and Chan, D.C. (2014). Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15, 634-646. https://doi.org/10.1038/nrm3877
  77. Mitchell, S.J., Martin-Montalvo, A., Mercken, E.M., Palacios, H.H., Ward, T.M., Abulwerdi, G., Minor, R.K., Vlasuk, G.P., Ellis, J.L., Sinclair, D.A., et al. (2014). The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep. 6, 836-843. https://doi.org/10.1016/j.celrep.2014.01.031
  78. Mouchiroud, L., Houtkooper, R.H., Moullan, N., Katsyuba, E., Ryu, D., Canto, C., Mottis, A., Jo, Y.S., Viswanathan, M., Schoonjans, K., et al. (2013). The NAD(+)/Sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430-441. https://doi.org/10.1016/j.cell.2013.06.016
  79. Mudo, G., Makela, J., Di Liberto, V., Tselykh, T.V., Olivieri, M., Piepponen, P., Eriksson, O., Malkia, A., Bonomo, A., Kairisalo, M., et al. (2012). Transgenic expression and activation of PGC-1${\alpha}$ protect dopaminergic neurons in the MPTP mouse model of Parkinson's disease. Cell. Mol. Life Sci. 69, 1153-1165. https://doi.org/10.1007/s00018-011-0850-z
  80. Mullin, S., and Schapira, A. (2015). The genetics of Parkinson's disease. Br Med. Bull. 114, 39-52. https://doi.org/10.1093/bmb/ldv022
  81. Murayama, A., Ohmori, K., Fujimura, A., Minami, H., Yasuzawa- Tanaka, K., Kuroda, T., Oie, S., Daitoku, H., Okuwaki, M., Nagata, K., et al. (2008). Epigenetic control of rDNA loci in response to intracellular energy status. Cell 133, 627-639. https://doi.org/10.1016/j.cell.2008.03.030
  82. Nemoto, S., Fergusson, M.M., and Finkel, T. (2005). SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J. Biol. Chem. 280, 16456-16460. https://doi.org/10.1074/jbc.M501485200
  83. Ng, F., and Tang, B.L. (2013). Sirtuins' modulation of autophagy. J. Cell. Physiol. 228, 2262-2270. https://doi.org/10.1002/jcp.24399
  84. Ng, F., Wijaya, L., and Tang, B.L. (2015). SIRT1 in the brainconnections with aging-associated disorders and lifespan. Front. Cell Neurosci. 9, 64.
  85. Nisoli, E., Tonello, C., Cardile, A., Cozzi, V., Bracale, R., Tedesco, L., Falcone, S., Valerio, A., Cantoni, O., Clementi, E., et al. (2005). Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310, 314-317. https://doi.org/10.1126/science.1117728
  86. Olmos, Y., Sanchez-Gomez, F.J., Wild, B., Garcia-Quintans, N., Cabezudo, S., Lamas, S., and Monsalve, M. (2013). SirT1 regulation of antioxidant genes is dependent on the formation of a FoxO3a/PGC-$1{\alpha}$ complex. Antioxid. Redox Signal. 19, 1507- 1521. https://doi.org/10.1089/ars.2012.4713
  87. Ou, X., Lee, M.R., Huang, X., Messina-Graham, S., and Broxmeyer, H.E. (2014). SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress. Stem Cells 32, 1183-1194. https://doi.org/10.1002/stem.1641
  88. Pacelli, C., De Rasmo, D., Signorile, A., Grattagliano, I., di Tullio, G., D'Orazio, A., Nico, B., Comi, G.P., Ronchi, D., Ferranini, E., et al. (2011). Mitochondrial defect and PGC-$1{\alpha}$ dysfunction in parkinassociated familial Parkinson's disease. Biochim. Biophys. Acta 1812, 1041-1053. https://doi.org/10.1016/j.bbadis.2010.12.022
  89. Pacholec, M., Bleasdale, J.E., Chrunyk, B., Cunningham, D., Flynn, D., Garofalo, R.S., Griffith, D., Griffor, M., Loulakis, P., Pabst, B., et al. (2010). SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J. Biol. Chem. 285, 8340- 8351. https://doi.org/10.1074/jbc.M109.088682
  90. Papandreou, I., Cairns, R.A., Fontana, L., Lim, A.L., and Denko, N.C. (2006). HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3, 187-197. https://doi.org/10.1016/j.cmet.2006.01.012
  91. Park, S.J., Ahmad, F., Philp, A., Baar, K., Williams, T., Luo, H., Ke, H., Rehmann, H., Taussig, R., Brown, A.L., et al. (2012). Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148, 421-433. https://doi.org/10.1016/j.cell.2012.01.017
  92. Philp, A., Chen, A., Lan, D., Meyer, G.A., Murphy, A.N., Knapp, A.E., Olfert, I.M., McCurdy, C.E., Marcotte, G.R., Hogan, M.C., et al. (2011). Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) deacetylation following endurance exercise. J. Biol. Chem. 286, 30561-30570. https://doi.org/10.1074/jbc.M111.261685
  93. Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado De Oliveira, R., Leid, M., McBurney, M.W., and Guarente, L. (2004). Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429, 771-776. https://doi.org/10.1038/nature02583
  94. Price, N.L., Gomes, A.P., Ling, A.J., Duarte, F.V., Martin-Montalvo, A., North, B.J., Agarwal, B., Ye, L., Ramadori, G., Teodoro, J.S., et al. (2012). SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 15, 675-690. https://doi.org/10.1016/j.cmet.2012.04.003
  95. Reznick, R.M., and Shulman, G.I. (2006). The role of AMP-activated protein kinase in mitochondrial biogenesis. J. Physiol. 574, 33- 39. https://doi.org/10.1113/jphysiol.2006.109512
  96. Reznick, R.M., Zong, H., Li, J., Morino, K., Moore, I.K., Yu, H.J., Liu, Z.X., Dong, J., Mustard, K.J., Hawley, S.A., et al. (2007). Agingassociated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab. 5, 151-156. https://doi.org/10.1016/j.cmet.2007.01.008
  97. Rodgers, J.T., Lerin, C., Haas, W., Gygi, S.P., Spiegelman, B.M., and Puigserver, P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434, 113-118. https://doi.org/10.1038/nature03354
  98. Rogina, B., and Helfand, S.L. (2004). Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl. Acad. Sci. USA. 101, 15998-16003. https://doi.org/10.1073/pnas.0404184101
  99. Rona-Voros, K., and Weydt, P. (2010). The role of PGC-$1{\alpha}$ in the pathogenesis of neurodegenerative disorders. Curr. Drug Targets 11, 1262-1269. https://doi.org/10.2174/1389450111007011262
  100. Ross, C.A., and Tabrizi, S.J. (2011). Huntington's disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 10, 83-98. https://doi.org/10.1016/S1474-4422(10)70245-3
  101. Sampaio-Marques, B., Felgueiras, C., Silva, A., Rodrigues, M., Tenreiro, S., Franssens, V., Reichert, A.S., Outeiro, T.F., Winderickx, J., and Ludovico, P. (2012). SNCA (${\alpha}$-synuclein)-induced toxicity in yeast cells is dependent on sirtuin 2 (Sir2)-mediated mitophagy. Autophagy 8, 1494-1509. https://doi.org/10.4161/auto.21275
  102. Satoh, A., Brace, C.S., Rensing, N., Cliften, P., Wozniak, D.F., Herzog, E.D., Yamada, K.A., and Imai, S.I. (2013). Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 18, 416-430. https://doi.org/10.1016/j.cmet.2013.07.013
  103. Shin, J.H., Ko, H.S., Kang, H., Lee, Y., Lee, Y.I., Pletinkova, O., Troconso, J.C., Dawson, V.L., and Dawson, T.M. (2011). PARIS (ZNF746) repression of PGC-$1{\alpha}$ contributes to neurodegeneration in Parkinson's disease. Cell 144, 689-702. https://doi.org/10.1016/j.cell.2011.02.010
  104. Sinclair, D.A., and Guarente, L. (1997). Extrachromosomal rDNA circles--a cause of aging in yeast. Cell 91, 1033-1042. https://doi.org/10.1016/S0092-8674(00)80493-6
  105. Stotland, A., and Gottlieb, R.A. (2015). Mitochondrial quality control: Easy come, easy go. Biochim. Biophys. Acta 1853, 2802-2811. https://doi.org/10.1016/j.bbamcr.2014.12.041
  106. Sugden, M.C., Caton, P.W., and Holness, M.J. (2010). PPAR control: it's SIRTainly as easy as PGC. J. Endocrinol. 204, 93-104. https://doi.org/10.1677/JOE-09-0359
  107. Suzuki, M., and Bartlett, J.D. (2014). Sirtuin1 and autophagy protect cells from fluoride-induced cell stress. Biochim. Biophys. Acta 1842, 245-255. https://doi.org/10.1016/j.bbadis.2013.11.023
  108. Tadaishi, M., Miura, S., Kai, Y., Kawasaki, E., Koshinaka, K., Kawanaka, K., Nagata, J., Oishi, Y., and Ezaki, O. (2011). Effect of exercise intensity and AICAR on isoform-specific expressions of murine skeletal muscle PGC-$1{\alpha}$ mRNA: a role of ${\beta}_2$-adrenergic receptor activation. Am. J. Physiol. Endocrinol. Metab. 300, E341-E349. https://doi.org/10.1152/ajpendo.00400.2010
  109. Tang, B.L. (2006). SIRT1, neuronal cell survival and the insulin/IGF- 1 aging paradox. Neurobiol. Aging 27, 501-505. https://doi.org/10.1016/j.neurobiolaging.2005.02.001
  110. Tang, B.L. (2009). Sirt1's complex roles in neuroprotection. Cell Mol. Neurobiol. 29, 1093-1103. https://doi.org/10.1007/s10571-009-9414-2
  111. Tanner, K.G., Landry, J., Sternglanz, R., and Denu, J.M. (2000). Silent information regulator 2 family of NAD- dependent histone/ protein deacetylases generates a unique product, 1-Oacetyl- ADP-ribose. Proc. Natl. Acad. Sci. USA 97, 14178-14182. https://doi.org/10.1073/pnas.250422697
  112. Tanno, M., Sakamoto, J., Miura, T., Shimamoto, K., and Horio, Y. (2007). Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J. Biol. Chem. 282, 6823-6832. https://doi.org/10.1074/jbc.M609554200
  113. Tissenbaum, H.A., and Guarente, L. (2001). Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227-230. https://doi.org/10.1038/35065638
  114. Tsunemi, T., and La Spada, A.R. (2012). PGC-$1{\alpha}$ at the intersection of bioenergetics regulation and neuron function: from Huntington's disease to Parkinson's disease and beyond. Prog Neurobiol. 97, 142-151. https://doi.org/10.1016/j.pneurobio.2011.10.004
  115. Um, J.H., Park, S.J., Kang, H., Yang, S., Foretz, M., McBurney, M.W., Kim, M.K., Viollet, B., and Chung, J.H. (2010). AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 59, 554-563. https://doi.org/10.2337/db09-0482
  116. Vaquero, A., Scher, M.B., Lee, D.H., Sutton, A., Cheng, H.L., Alt, F.W., Serrano, L., Sternglanz, R., and Reinberg, D. (2006). SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev. 20, 1256-1261. https://doi.org/10.1101/gad.1412706
  117. Vaquero, A., Scher, M., Erdjument-Bromage, H., Tempst, P., Serrano, L., and Reinberg, D. (2007). SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature 450, 440-444. https://doi.org/10.1038/nature06268
  118. Vaziri, H., Dessain, S.K., Ng Eaton, E., Imai, S.I., Frye, R.A., Pandita, T.K., Guarente, L., and Weinberg, R.A. (2001). hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107, 149-159. https://doi.org/10.1016/S0092-8674(01)00527-X
  119. Vega, R.B., Horton, J.L., and Kelly, D.P. (2015). Maintaining Ancient Organelles: Mitochondrial Biogenesis and Maturation. Circ. Res. 116, 1820-1834. https://doi.org/10.1161/CIRCRESAHA.116.305420
  120. Verdin, E., and Ott, M. (2015). 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 16, 258-264. https://doi.org/10.1038/nrm3931
  121. Webb, A.E., and Brunet, A. (2014). FOXO transcription factors: key regulators of cellular quality control. Trends. Biochem. Sci. 39, 159-169. https://doi.org/10.1016/j.tibs.2014.02.003
  122. Wood, J.G., Rogina, B., Lavu, S., Howitz, K., Helfand, S.L., Tatar, M., and Sinclair, D. (2004). Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 430, 686-689. https://doi.org/10.1038/nature02789
  123. Yang, X.J., and Seto, E. (2008). The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat. Rev. Mol. Cell Biol. 9, 206-218.
  124. Yeung, F., Hoberg, J.E., Ramsey, C.S., Keller, M.D., Jones, D.R., Frye, R.A., and Mayo, M.W. (2004). Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369-2380. https://doi.org/10.1038/sj.emboj.7600244
  125. Yoshii, S.R., and Mizushima, N. (2015). Autophagy machinery in the context of mammalian mitophagy. Biochim. Biophys. Acta 1853, 2797-2801. https://doi.org/10.1016/j.bbamcr.2015.01.013
  126. Zhang, Y., Zhang, M., Dong, H., Yong, S., Li, X., Olashaw, N., Kruk, P.A., Cheng, J.Q., Bai, W., Chen, J., et al. (2009). Deacetylation of cortactin by SIRT1 promotes cell migration. Oncogene 28, 445-460. https://doi.org/10.1038/onc.2008.388
  127. Zhang, F., Wang, S., Gan, L., Vosler, P.S., Gao, Y., Zigmond, M.J., and Chen, J. (2011). Protective effects and mechanisms of sirtuins in the nervous system. Prog. Neurobiol. 95, 373-395. https://doi.org/10.1016/j.pneurobio.2011.09.001
  128. Zheng, B., Liao, Z., Locascio, J.J., Lesniak, K.A., Roderick, S.S., Watt, M.L., Eklund, A.C., Zhang-James, Y., Kim, P.D., Hauser, M.A., et al. (2010). PGC-$1{\alpha}$, a potential therapeutic target for early intervention in Parkinson's disease. Sci. Transl. Med. 2, 52ra73.
  129. Zong, H., Ren, J.M., Young, L.H., Pypaert, M., Mu, J., Birnbaum, M.J., and Shulman, G.I. (2002). AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc. Natl. Acad. Sci. USA 99, 15983-15987. https://doi.org/10.1073/pnas.252625599
  130. Zu, Y., Liu, L., Lee, M.Y.K., Xu, C., Liang, Y., Man, R.Y., Vanhoutte, P.M., and Wang, Y. (2010). SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells. Circ. Res. 106, 1384-1393. https://doi.org/10.1161/CIRCRESAHA.109.215483

Cited by

  1. Therapeutic role of sirtuins in neurodegenerative disease and their modulation by polyphenols vol.73, 2017, https://doi.org/10.1016/j.neubiorev.2016.11.022
  2. Depigmenting Effect of Resveratrol Is Dependent on FOXO3a Activation without SIRT1 Activation vol.18, pp.6, 2017, https://doi.org/10.3390/ijms18061213
  3. Impaired AMPK Activity Drives Age-Associated Acute Lung Injury after Hemorrhage vol.56, pp.5, 2017, https://doi.org/10.1165/rcmb.2017-0023ED
  4. Cryptotanshinone promotes commitment to the brown adipocyte lineage and mitochondrial biogenesis in C3H10T1/2 mesenchymal stem cells via AMPK and p38-MAPK signaling vol.1862, pp.10, 2017, https://doi.org/10.1016/j.bbalip.2017.08.001
  5. Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity vol.18, pp.8, 2017, https://doi.org/10.3390/ijms18081821
  6. Melatonin, clock genes and mitochondria in sepsis 2017, https://doi.org/10.1007/s00018-017-2610-1
  7. PINK1 signaling in mitochondrial homeostasis and in aging (Review) vol.39, pp.1, 2017, https://doi.org/10.3892/ijmm.2016.2827
  8. Sirtuins as modifiers of Parkinson's disease pathology vol.95, pp.4, 2017, https://doi.org/10.1002/jnr.23806
  9. Mitochondria as pharmacological targets in Down syndrome 2018, https://doi.org/10.1016/j.freeradbiomed.2017.08.014
  10. The intracellular angiotensin system buffers deleterious effects of the extracellular paracrine system vol.8, pp.9, 2017, https://doi.org/10.1038/cddis.2017.439
  11. Could Sirtuin Activities Modify ALS Onset and Progression? vol.37, pp.7, 2017, https://doi.org/10.1007/s10571-016-0452-2
  12. Treadmill Exercise Attenuates α-Synuclein Levels by Promoting Mitochondrial Function and Autophagy Possibly via SIRT1 in the Chronic MPTP/P-Induced Mouse Model of Parkinson’s Disease vol.32, pp.3, 2017, https://doi.org/10.1007/s12640-017-9770-5
  13. VDAC1 deacetylation is involved in the protective effects of resveratrol against mitochondria-mediated apoptosis in cardiomyocytes subjected to anoxia/reoxygenation injury vol.95, 2017, https://doi.org/10.1016/j.biopha.2017.08.046
  14. Loss of BRG1 induces CRC cell senescence by regulating p53/p21 pathway vol.8, pp.2, 2017, https://doi.org/10.1038/cddis.2017.1
  15. Concentration-dependent metabolic effects of metformin in healthy and Fanconi anemia lymphoblast cells 2017, https://doi.org/10.1002/jcp.26085
  16. Linking mitochondrial dysfunction to neurodegeneration in lysosomal storage diseases vol.40, pp.5, 2017, https://doi.org/10.1007/s10545-017-0048-0
  17. Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders vol.42, pp.3, 2017, https://doi.org/10.1007/s11064-016-2110-y
  18. Angiotensin II Type 1 Receptor‐Associated Protein Regulates Kidney Aging and Lifespan Independent of Angiotensin vol.6, pp.8, 2017, https://doi.org/10.1161/JAHA.117.006120
  19. Catalpol attenuates oxidative stress and promotes autophagy in TNF-α-exposed HAECs by up-regulating AMPK vol.7, pp.83, 2017, https://doi.org/10.1039/C7RA09085D
  20. Reduction in podocyte SIRT1 accelerates kidney injury in aging mice vol.313, pp.3, 2017, https://doi.org/10.1152/ajprenal.00255.2017
  21. Biological Activities of Stilbenoids vol.19, pp.3, 2018, https://doi.org/10.3390/ijms19030792
  22. PGC1α: Friend or Foe in Cancer? vol.9, pp.1, 2018, https://doi.org/10.3390/genes9010048
  23. Sirt1: A Guardian of the Development of Diabetic Retinopathy vol.67, pp.4, 2018, https://doi.org/10.2337/db17-0996
  24. Emerging Players at the Intersection of Chondrocyte Loss of Maturational Arrest, Oxidative Stress, Senescence and Low-Grade Inflammation in Osteoarthritis vol.2018, pp.1942-0994, 2018, https://doi.org/10.1155/2018/3075293
  25. Xanthohumol, a hop-derived prenylflavonoid present in beer, impairs mitochondrial functionality of SW620 colon cancer cells pp.1465-3478, 2018, https://doi.org/10.1080/09637486.2018.1540558
  26. Brain SIRT1 Mediates Metabolic Homeostasis and Neuroprotection vol.9, pp.1664-2392, 2018, https://doi.org/10.3389/fendo.2018.00702
  27. High-intensity interval training (HIIT) effectively enhances heart function via miR-195 dependent cardiomyopathy reduction in high-fat high-fructose diet-induced diabetic rats pp.1744-4160, 2020, https://doi.org/10.1080/13813455.2018.1511599
  28. Augmenter of liver regeneration promotes mitochondrial biogenesis in renal ischemia–reperfusion injury vol.23, pp.11-12, 2018, https://doi.org/10.1007/s10495-018-1487-2
  29. Understanding the Role of Dysfunctional and Healthy Mitochondria in Stroke Pathology and Its Treatment vol.19, pp.7, 2018, https://doi.org/10.3390/ijms19072127
  30. Resveratrol Induces Brain Resilience Against Alzheimer Neurodegeneration Through Proteostasis Enhancement pp.1559-1182, 2018, https://doi.org/10.1007/s12035-018-1157-y
  31. Detection of Insertions/Deletions Within SIRT1, SIRT2 and SIRT3 Genes and Their Associations with Body Measurement Traits in Cattle pp.1573-4927, 2018, https://doi.org/10.1007/s10528-018-9868-3
  32. Idiopathic Pulmonary Fibrosis: Aging, Mitochondrial Dysfunction, and Cellular Bioenergetics vol.5, pp.2296-858X, 2018, https://doi.org/10.3389/fmed.2018.00010
  33. The Endoplasmic Reticulum Stress Response in Neuroprogressive Diseases: Emerging Pathophysiological Role and Translational Implications pp.1559-1182, 2018, https://doi.org/10.1007/s12035-018-1028-6
  34. vol.9, pp.5, 2019, https://doi.org/10.1039/C8RA09482A
  35. Redox-regulation and life-history trade-offs: scavenging mitochondrial ROS improves growth in a wild bird vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-38535-5
  36. SIRT1 in forebrain excitatory neurons produces sexually dimorphic effects on depression-related behaviors and modulates neuronal excitability and synaptic transmission in the medial prefrontal cortex pp.1476-5578, 2020, https://doi.org/10.1038/s41380-019-0352-1
  37. gene and growth traits in Chinese cattle pp.1532-2378, 2019, https://doi.org/10.1080/10495398.2018.1520716
  38. SIRT1 as a therapeutic target for Alzheimer’s disease vol.27, pp.8, 2016, https://doi.org/10.1515/revneuro-2016-0023
  39. SIRT1 as a therapeutic target for Alzheimer’s disease vol.27, pp.8, 2016, https://doi.org/10.1515/revneuro-2016-0023
  40. Utrophin influences mitochondrial pathology and oxidative stress in dystrophic muscle vol.7, pp.1, 2016, https://doi.org/10.1186/s13395-017-0139-5
  41. Pyrroloquinoline Quinone, a Redox-Active o-Quinone, Stimulates Mitochondrial Biogenesis by Activating the SIRT1/PGC-1α Signaling Pathway vol.56, pp.50, 2016, https://doi.org/10.1021/acs.biochem.7b01185
  42. Structural Modification of (−)-Epigallocatechin Gallate (EGCG) Shows Significant Enhancement in Mitochondrial Biogenesis vol.66, pp.15, 2018, https://doi.org/10.1021/acs.jafc.8b00364
  43. Identification and Characterization of Novel Receptor-Interacting Serine/Threonine‐Protein Kinase 2 Inhibitors Using Structural Similarity Analysis vol.365, pp.2, 2016, https://doi.org/10.1124/jpet.117.247163
  44. Mitochondrial targeting as a novel therapy for stroke vol.4, pp.3, 2016, https://doi.org/10.4103/bc.bc_14_18
  45. Resveratrol inhibits paclitaxel-induced neuropathic pain by the activation of PI3K/Akt and SIRT1/PGC1α pathway vol.12, pp.None, 2016, https://doi.org/10.2147/jpr.s185873
  46. Energy-Sensing Pathways in Ischemia: The Counterbalance Between AMPK and mTORC vol.25, pp.45, 2019, https://doi.org/10.2174/1381612825666191210152156
  47. Perspective: Mitochondria-ER Contacts in Metabolic Cellular Stress Assessed by Microscopy vol.8, pp.1, 2016, https://doi.org/10.3390/cells8010005
  48. Variations in HPV function are associated with survival in squamous cell carcinoma vol.4, pp.1, 2016, https://doi.org/10.1172/jci.insight.124762
  49. AMPK-Targeted Effector Networks in Mycobacterial Infection vol.10, pp.None, 2016, https://doi.org/10.3389/fmicb.2019.00520
  50. Mitochondria, Telomeres and Telomerase Subunits vol.7, pp.None, 2016, https://doi.org/10.3389/fcell.2019.00274
  51. Further investigation of mitochondrial biogenesis and gene expression of key regulators in ascites- susceptible and ascites- resistant broiler research lines vol.14, pp.3, 2016, https://doi.org/10.1371/journal.pone.0205480
  52. Nobiletin ameliorates hepatic ischemia and reperfusion injury through the activation of SIRT-1/FOXO3a-mediated autophagy and mitochondrial biogenesis vol.51, pp.4, 2019, https://doi.org/10.1038/s12276-019-0245-z
  53. Salidroside attenuates oxidized low-density lipoprotein-induced endothelial cell injury via promotion of the AMPK/SIRT1 pathway vol.43, pp.6, 2019, https://doi.org/10.3892/ijmm.2019.4153
  54. Sirtuin 1 Regulates Mitochondrial Biogenesis and Provides an Endogenous Neuroprotective Mechanism Against Seizure-Induced Neuronal Cell Death in the Hippocampus Following Status Epilepticus vol.20, pp.14, 2016, https://doi.org/10.3390/ijms20143588
  55. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure vol.25, pp.7, 2016, https://doi.org/10.1111/cns.13116
  56. MicroRNA-34a (miR-34a) Mediates Retinal Endothelial Cell Premature Senescence through Mitochondrial Dysfunction and Loss of Antioxidant Activities vol.8, pp.9, 2016, https://doi.org/10.3390/antiox8090328
  57. Microglia Activated by Excess Cortisol Induce HMGB1 Acetylation and Neuroinflammation in the Hippocampal DG Region of Mice Following Cold Exposure vol.9, pp.9, 2016, https://doi.org/10.3390/biom9090426
  58. Melatonin Effects on Non-Alcoholic Fatty Liver Disease Are Related to MicroRNA-34a-5p/Sirt1 Axis and Autophagy vol.8, pp.9, 2016, https://doi.org/10.3390/cells8091053
  59. Mitochondrial dysfunction and chronic lung disease vol.35, pp.6, 2019, https://doi.org/10.1007/s10565-019-09473-9
  60. Adaptive effects of gestational caloric restriction in the mitochondria of Wistar rats’ brain: A DOHaD approach vol.79, pp.None, 2016, https://doi.org/10.1016/j.ijdevneu.2019.09.004
  61. Sirtuins and diabetes: optimizing the sweetness in the blood vol.4, pp.1, 2016, https://doi.org/10.1186/s41231-019-0034-7
  62. Resveratrol and Oxyresveratrol Activate Thermogenesis via Different Transcriptional Coactivators in High-Fat Diet-Induced Obese Mice vol.67, pp.49, 2016, https://doi.org/10.1021/acs.jafc.9b05963
  63. Calcitonin Gene-Related Peptide Attenuates LPS-Induced Acute Kidney Injury by Regulating Sirt1 vol.26, pp.None, 2016, https://doi.org/10.12659/msm.923900
  64. Epigallocatechin-3-gallate preconditioned Adipose-derived Stem Cells confer Neuroprotection in aging rat brain vol.17, pp.13, 2016, https://doi.org/10.7150/ijms.46696
  65. Methylglyoxal-Dependent Glycative Stress and Deregulation of SIRT1 Functional Network in the Ovary of PCOS Mice vol.9, pp.1, 2016, https://doi.org/10.3390/cells9010209
  66. Accelerated Kidney Aging in Diabetes Mellitus vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/1234059
  67. PGC-1 α , Inflammation, and Oxidative Stress: An Integrative View in Metabolism vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/1452696
  68. Chronic Royal Jelly Administration Induced Antidepressant-Like Effects Through Increased Sirtuin1 and Oxidative Phosphorylation Protein Expression in the Amygdala of Mice vol.13, pp.None, 2016, https://doi.org/10.2174/1874467213666200424160153
  69. Sildenafil for the Treatment of Alzheimer’s Disease: A Systematic Review vol.4, pp.1, 2016, https://doi.org/10.3233/adr-200166
  70. Phosphodiesterase Inhibitors for Alzheimer’s Disease: A Systematic Review of Clinical Trials and Epidemiology with a Mechanistic Rationale vol.4, pp.1, 2016, https://doi.org/10.3233/adr-200191
  71. Transcription-based circadian mechanism controls the duration of molecular clock states in response to signaling inputs vol.484, pp.None, 2020, https://doi.org/10.1016/j.jtbi.2019.110015
  72. Cognitive Protective Mechanism of Crocin Pretreatment in Rat Submitted to Acute High-Altitude Hypoxia Exposure vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/3409679
  73. Gegen Qinlian Decoction Coordinately Regulates PPARγ and PPARα to Improve Glucose and Lipid Homeostasis in Diabetic Rats and Insulin Resistance 3T3-L1 Adipocytes vol.11, pp.None, 2016, https://doi.org/10.3389/fphar.2020.00811
  74. Sirt6 Deacetylase: A Potential Key Regulator in the Prevention of Obesity, Diabetes and Neurodegenerative Disease vol.11, pp.None, 2016, https://doi.org/10.3389/fphar.2020.598326
  75. Antioxidant Alternatives in the Treatment of Amyotrophic Lateral Sclerosis: A Comprehensive Review vol.11, pp.None, 2020, https://doi.org/10.3389/fphys.2020.00063
  76. Harnessing the Neural Stem Cell Secretome for Regenerative Neuroimmunology vol.14, pp.None, 2020, https://doi.org/10.3389/fncel.2020.590960
  77. Anti-Aging Effects of Calorie Restriction (CR) and CR Mimetics Based on the Senoinflammation Concept vol.12, pp.2, 2020, https://doi.org/10.3390/nu12020422
  78. Altered mitochondrial metabolism in the insulin‐resistant heart vol.228, pp.3, 2016, https://doi.org/10.1111/apha.13430
  79. Prevention of Doxorubicin-Induced Autophagy Attenuates Oxidative Stress and Skeletal Muscle Dysfunction vol.9, pp.3, 2016, https://doi.org/10.3390/antiox9030263
  80. The Mitochondrial Protein VDAC1 at the Crossroads of Cancer Cell Metabolism: The Epigenetic Link vol.12, pp.4, 2016, https://doi.org/10.3390/cancers12041031
  81. Arsenic Sulfide Nanoformulation Induces Megakaryocytic Differentiation through Histone Deacetylase Inhibition vol.3, pp.5, 2020, https://doi.org/10.1002/adtp.201900151
  82. Interplay of adenosine monophosphate‐activated protein kinase/sirtuin‐1 activation and sodium influx inhibition mediates the renal benefits of sodium‐glucose co‐transporter vol.22, pp.5, 2016, https://doi.org/10.1111/dom.13961
  83. Protection Against Insulin Resistance by Apolipoprotein M/Sphingosine-1-Phosphate vol.69, pp.5, 2016, https://doi.org/10.2337/db19-0811
  84. Senoinflammation: A major mediator underlying age-related metabolic dysregulation vol.134, pp.None, 2020, https://doi.org/10.1016/j.exger.2020.110891
  85. Modulators of platelet function in aging vol.31, pp.4, 2016, https://doi.org/10.1080/09537104.2019.1665641
  86. Role of Deranged Energy Deprivation Signaling in the Pathogenesis of Cardiac and Renal Disease in States of Perceived Nutrient Overabundance vol.141, pp.25, 2016, https://doi.org/10.1161/circulationaha.119.045561
  87. The interplay between oxidative stress and bioenergetic failure in neuropsychiatric illnesses: can we explain it and can we treat it? vol.47, pp.7, 2016, https://doi.org/10.1007/s11033-020-05590-5
  88. Silent Mating–Type Information Regulation 2 Homolog 1 Attenuates the Neurotoxicity Associated with Alzheimer Disease via a Mechanism Which May Involve Regulation of Peroxisome Proliferator-Activ vol.190, pp.7, 2016, https://doi.org/10.1016/j.ajpath.2020.03.015
  89. CD38: T Cell Immuno-Metabolic Modulator vol.9, pp.7, 2016, https://doi.org/10.3390/cells9071716
  90. A New Vision of Mitochondrial Unfolded Protein Response to the Sirtuin Family vol.18, pp.7, 2020, https://doi.org/10.2174/1570159x18666200123165002
  91. Function of hesperidin alleviating inflammation and oxidative stress responses in COPD mice might be related to SIRT1/PGC-1α/NF-κB signaling axis vol.40, pp.4, 2016, https://doi.org/10.1080/10799893.2020.1738483
  92. Magnetic fields modulate metabolism and gut microbiome in correlation with Pgc‐1α expression: Follow‐up to an in vitro magnetic mitohormetic study vol.34, pp.8, 2016, https://doi.org/10.1096/fj.201903005rr
  93. The Effect of Resveratrol on Mitochondrial Function in Myoblasts of Patients with the Common m.3243A>G Mutation vol.10, pp.8, 2020, https://doi.org/10.3390/biom10081103
  94. Mutual Antagonism of Hypoxia-Inducible Factor Isoforms in Cardiac, Vascular, and Renal Disorders vol.5, pp.9, 2016, https://doi.org/10.1016/j.jacbts.2020.05.006
  95. Oxidative Stress, Neuroinflammation and Mitochondria in the Pathophysiology of Amyotrophic Lateral Sclerosis vol.9, pp.9, 2020, https://doi.org/10.3390/antiox9090901
  96. Insights into the Role of microRNAs in Colorectal Cancer (CRC) Metabolism vol.12, pp.9, 2020, https://doi.org/10.3390/cancers12092462
  97. Resveratrol and Resveratrol-Aspirin Hybrid Compounds as Potent Intestinal Anti-Inflammatory and Anti-Tumor Drugs vol.25, pp.17, 2020, https://doi.org/10.3390/molecules25173849
  98. Anti-Obesity Effects of Soybean Embryo Extract and Enzymatically-Modified Isoquercitrin vol.10, pp.10, 2016, https://doi.org/10.3390/biom10101394
  99. Molecular Mechanisms of SGLT2 Inhibitor on Cardiorenal Protection vol.21, pp.21, 2020, https://doi.org/10.3390/ijms21217833
  100. Energy Metabolism Decline in the Aging Brain—Pathogenesis of Neurodegenerative Disorders vol.10, pp.11, 2016, https://doi.org/10.3390/metabo10110450
  101. SIRT1 Activation Using CRISPR/dCas9 Promotes Regeneration of Human Corneal Endothelial Cells through Inhibiting Senescence vol.9, pp.11, 2016, https://doi.org/10.3390/antiox9111085
  102. Re‐equilibration of imbalanced NAD metabolism ameliorates the impact of telomere dysfunction vol.39, pp.21, 2020, https://doi.org/10.15252/embj.2019103420
  103. Effects of Rikkunshito treatment on renal fibrosis/inflammation and body weight reduction in a unilateral ureteral obstruction model in mice vol.10, pp.None, 2016, https://doi.org/10.1038/s41598-020-58214-0
  104. Hydrogen Attenuates Allergic Inflammation by Reversing Energy Metabolic Pathway Switch vol.10, pp.None, 2016, https://doi.org/10.1038/s41598-020-58999-0
  105. Anomalous AMPK-regulated angiotensin AT 1 R expression and SIRT1-mediated mitochondrial biogenesis at RVLM in hypertension programming of offspring to maternal high fructose exposure vol.27, pp.1, 2016, https://doi.org/10.1186/s12929-020-00660-z
  106. Autophagy-dependent and -independent modulation of oxidative and organellar stress in the diabetic heart by glucose-lowering drugs vol.19, pp.None, 2020, https://doi.org/10.1186/s12933-020-01041-4
  107. Endothelial SIRT1 as a Target for the Prevention of Arterial Aging: Promises and Challenges vol.78, pp.6, 2016, https://doi.org/10.1097/fjc.0000000000001154
  108. Susceptibility to COVID‐19 in populations with health disparities: Posited involvement of mitochondrial disorder, socioeconomic stress, and pollutants vol.35, pp.1, 2016, https://doi.org/10.1002/jbt.22626
  109. Inhibition of alcohol-induced inflammation and oxidative stress by astaxanthin is mediated by its opposite actions in the regulation of sirtuin 1 and histone deacetylase 4 in macrophages vol.1866, pp.1, 2016, https://doi.org/10.1016/j.bbalip.2020.158838
  110. Study of calcitriol anti-aging effects on human natural killer cells in vitro vol.12, pp.1, 2021, https://doi.org/10.1080/21655979.2021.1972076
  111. Blockage of protease-activated receptor 2 exacerbates inflammation in high-fat environment partly through autophagy inhibition vol.320, pp.1, 2016, https://doi.org/10.1152/ajpgi.00203.2020
  112. The Oxidative Stress and Chronic Inflammatory Process in Chagas Disease: Role of Exosomes and Contributing Genetic Factors vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/4993452
  113. SIRT1 is Required for Exercise-Induced Beneficial Effects on Myocardial Ischemia/Reperfusion Injury vol.14, pp.None, 2016, https://doi.org/10.2147/jir.s300997
  114. SIRT1 Activation Attenuates the Cardiac Dysfunction Induced by Endothelial Cell-Specific Deletion of CRIF1 vol.9, pp.1, 2016, https://doi.org/10.3390/biomedicines9010052
  115. Inhibition of miRNA-155 Alleviates High Glucose-Induced Podocyte Inflammation by Targeting SIRT1 in Diabetic Mice vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/5597394
  116. SIRT1 and SIRT2 Activity Control in Neurodegenerative Diseases vol.11, pp.None, 2016, https://doi.org/10.3389/fphar.2020.585821
  117. Hengshun Aromatic Vinegar Ameliorates Vascular Endothelial Injury via Regulating PKCζ-Mediated Oxidative Stress and Apoptosis vol.8, pp.None, 2016, https://doi.org/10.3389/fnut.2021.635232
  118. Mitochondrial Dysfunction and Oxidative Stress in Alzheimer’s Disease vol.13, pp.None, 2016, https://doi.org/10.3389/fnagi.2021.617588
  119. MicroRNAs as Potential Orchestrators of Alzheimer's Disease-Related Pathologies: Insights on Current Status and Future Possibilities vol.13, pp.None, 2016, https://doi.org/10.3389/fnagi.2021.743573
  120. Sodium-Glucose Cotransporter 2 Inhibitors Work as a “Regulator” of Autophagic Activity in Overnutrition Diseases vol.12, pp.None, 2016, https://doi.org/10.3389/fphar.2021.761842
  121. The Dawn of Mitophagy: What Do We Know by Now? vol.19, pp.2, 2016, https://doi.org/10.2174/1570159x18666200522202319
  122. Rutin and Gallic Acid Regulates Mitochondrial Functions via the SIRT1 Pathway in C2C12 Myotubes vol.10, pp.2, 2016, https://doi.org/10.3390/antiox10020286
  123. Effect of Leptin in Human Sertoli Cells Mitochondrial Physiology vol.28, pp.3, 2021, https://doi.org/10.1007/s43032-020-00328-x
  124. The involvement of autophagy in the maintenance of endothelial homeostasis: The role of mitochondria vol.57, pp.None, 2016, https://doi.org/10.1016/j.mito.2020.12.013
  125. Reduced metabolic capacity in fast and slow skeletal muscle via oxidative stress and the energy‐sensing of AMPK/SIRT1 in malnutrition vol.9, pp.5, 2016, https://doi.org/10.14814/phy2.14763
  126. Natural Extracts to Augment Energy Expenditure as a Complementary Approach to Tackle Obesity and Associated Metabolic Alterations vol.11, pp.3, 2021, https://doi.org/10.3390/biom11030412
  127. Links between mitochondrial retrograde response and mitophagy in pathogenic cell signalling vol.78, pp.8, 2021, https://doi.org/10.1007/s00018-021-03770-5
  128. 13C Metabolic Flux Analysis Indicates Endothelial Cells Attenuate Metabolic Perturbations by Modulating TCA Activity vol.11, pp.4, 2021, https://doi.org/10.3390/metabo11040226
  129. SRT1720 Pretreatment Promotes Mitochondrial Biogenesis of Aged Human Mesenchymal Stem Cells and Improves Their Engraftment in Postinfarct Nonhuman Primate Hearts vol.30, pp.7, 2016, https://doi.org/10.1089/scd.2020.0149
  130. Low magnitude vibration alleviates age-related bone loss by inhibiting cell senescence of osteogenic cells in naturally senescent rats vol.13, pp.8, 2016, https://doi.org/10.18632/aging.202907
  131. Nicotinamide ameliorates energy deficiency and improves retinal function in Cav‐1‐/‐ mice vol.157, pp.3, 2016, https://doi.org/10.1111/jnc.15266
  132. Pyrroloquinoline quinone promotes mitochondrial biogenesis in rotenone-induced Parkinson’s disease model via AMPK activation vol.42, pp.5, 2016, https://doi.org/10.1038/s41401-020-0487-2
  133. The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer’s disease pathology: From antioxidant to epigenetic therapy vol.67, pp.None, 2016, https://doi.org/10.1016/j.arr.2021.101271
  134. Contribution of PGC-1α to Obesity- and Caloric Restriction-Related Physiological Changes in White Adipose Tissue vol.22, pp.11, 2021, https://doi.org/10.3390/ijms22116025
  135. Nucleotide Excision Repair: From Molecular Defects to Neurological Abnormalities vol.22, pp.12, 2021, https://doi.org/10.3390/ijms22126220
  136. Recent Insights into the Interplay of Alpha-Synuclein and Sphingolipid Signaling in Parkinson’s Disease vol.22, pp.12, 2021, https://doi.org/10.3390/ijms22126277
  137. Linking NAD metabolism and DNA repair to inflammation in SSc vol.17, pp.7, 2016, https://doi.org/10.1038/s41584-021-00629-8
  138. The role of SIRT2 in vascular‐related and heart‐related diseases: A review vol.25, pp.14, 2016, https://doi.org/10.1111/jcmm.16618
  139. miR34a: a novel small molecule regulator with a big role in bronchopulmonary dysplasia vol.321, pp.1, 2016, https://doi.org/10.1152/ajplung.00279.2020
  140. Diabetes Mellitus and Cardiovascular Diseases: Nutraceutical Interventions Related to Caloric Restriction vol.22, pp.15, 2016, https://doi.org/10.3390/ijms22157772
  141. MiR-155-5p promotes renal interstitial fibrosis in obstructive nephropathy via inhibiting SIRT1 signaling pathway vol.41, pp.5, 2016, https://doi.org/10.1080/10799893.2020.1825491
  142. Chrysanthemum morifolium Flower Extract Ameliorates Obesity-Induced Inflammation and Increases the Muscle Mitochondria Content and AMPK/SIRT1 Activities in Obese Rats vol.13, pp.10, 2021, https://doi.org/10.3390/nu13103660
  143. The effect of curculigo orchioides (Xianmao) on kidney energy metabolism and the related mechanism in rats based on metabolomics vol.9, pp.11, 2016, https://doi.org/10.1002/fsn3.2573
  144. MicroRNA 132-3p Is Upregulated in Laron Syndrome Patients and Controls Longevity Gene Expression vol.22, pp.21, 2016, https://doi.org/10.3390/ijms222111861
  145. Alzheimer’s Disease and Type 2 Diabetes Mellitus: The Use of MCT Oil and a Ketogenic Diet vol.22, pp.22, 2016, https://doi.org/10.3390/ijms222212310
  146. miR-21 mimic blocks obesity in mice: A novel therapeutic option vol.26, pp.None, 2021, https://doi.org/10.1016/j.omtn.2021.06.019
  147. Ginsenoside Rg3 alleviates septic liver injury by regulating the lncRNA TUG1/miR-200c-3p/SIRT1 axis vol.18, pp.1, 2016, https://doi.org/10.1186/s12950-021-00296-2
  148. RETRACTED ARTICLE: MiR-34a inhibitor protects mesenchymal stem cells from hyperglycaemic injury through the activation of the SIRT1/FoxO3a autophagy pathway vol.12, pp.1, 2021, https://doi.org/10.1186/s13287-021-02183-2
  149. Dietary Phytoestrogens and Their Metabolites as Epigenetic Modulators with Impact on Human Health vol.10, pp.12, 2021, https://doi.org/10.3390/antiox10121893
  150. Potential Health Benefits of Whole Grains: Modulation of Mitochondrial Biogenesis and Energy Metabolism vol.69, pp.47, 2021, https://doi.org/10.1021/acs.jafc.1c05527
  151. Protective Effect of Sirt1 against Radiation-Induced Damage vol.196, pp.6, 2016, https://doi.org/10.1667/rade-20-00139.1
  152. Protective role of mitoquinone against impaired mitochondrial homeostasis in metabolic syndrome vol.61, pp.22, 2021, https://doi.org/10.1080/10408398.2020.1809344
  153. Hypoxia: Role of SIRT1 and the protective effect of resveratrol in ovarian function vol.21, pp.1, 2022, https://doi.org/10.1002/rmb2.12428
  154. Deregulated mitochondrial microRNAs in Alzheimer's disease: Focus on synapse and mitochondria vol.73, pp.None, 2016, https://doi.org/10.1016/j.arr.2021.101529
  155. Mitochondrial homeostasis and redox status in cardiovascular diseases: Protective role of the vagal system vol.178, pp.None, 2022, https://doi.org/10.1016/j.freeradbiomed.2021.12.255
  156. Inhibition of ATG3 ameliorates liver steatosis by increasing mitochondrial function vol.76, pp.1, 2016, https://doi.org/10.1016/j.jhep.2021.09.008
  157. Sirtuins and Sepsis: Cross Talk between Redox and Epigenetic Pathways vol.11, pp.1, 2022, https://doi.org/10.3390/antiox11010003
  158. Bicalutamide Exhibits Potential to Damage Kidney via Destroying Complex I and Affecting Mitochondrial Dynamics vol.11, pp.1, 2022, https://doi.org/10.3390/jcm11010135
  159. Exosomes in triple negative breast cancer: From bench to bedside vol.527, pp.None, 2022, https://doi.org/10.1016/j.canlet.2021.12.009