References
- Albani, D., Polito, L., Batelli, S., De Mauro, S., Fracasso, C., Martelli, G., Colombo, L., Manzoni, C., Salmona, M., Caccia, S., et al. (2009). The SIRT1 activator resveratrol protects SK-N-BE cells from oxidative stress and against toxicity caused by alphasynuclein or amyloid-beta (1-42) peptide. J. Neurochem. 110, 1445-1456. https://doi.org/10.1111/j.1471-4159.2009.06228.x
- Amat, R., Planavila, A., Chen, S.L., Iglesias, R., Giralt, M., and Villarroya, F. (2009). SIRT1 controls the transcription of the peroxisome proliferator-activated receptor-gamma Co-activator- 1alpha (PGC-1alpha) gene in skeletal muscle through the PGC- 1alpha autoregulatory loop and interaction with MyoD. J. Biol. Chem. 284, 21872-21880. https://doi.org/10.1074/jbc.M109.022749
- Anderson, R.M., Barger, J.L., Edwards, M.G., Braun, K.H., O'Connor, C.E., Prolla, T.A., and Weindruch, R. (2008). Dynamic regulation of PGC-1alpha localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response. Aging Cell. 7, 101-111. https://doi.org/10.1111/j.1474-9726.2007.00357.x
- Aquilano, K., Vigilanza, P., Baldelli, S., Pagliei, B., Rotilio, G., and Ciriolo, M.R. (2010). Peroxisome proliferator-activated receptor gamma co-activator 1alpha (PGC-1alpha) and sirtuin 1 (SIRT1) reside in mitochondria: possible direct function in mitochondrial biogenesis. J. Biol. Chem. 285, 21590-21599. https://doi.org/10.1074/jbc.M109.070169
-
Aquilano, K., Baldelli, S., Pagliei, B., and Ciriolo, M.R. (2012). Extranuclear localization of SIRT1 and PGC-
$1{\alpha}$ : an insight into possible roles in diseases associated with mitochondrial dysfunction. Curr. Mol. Med. 13, 140-154. https://doi.org/10.2174/1566524011307010140 -
Austin, S., and St-Pierre, J. (2012).
$PGC1{\alpha}$ and mitochondrial metabolism-- emerging concepts and relevance in ageing and neurodegenerative disorders. J. Cell Sci. 125, 4963-4971. https://doi.org/10.1242/jcs.113662 - Bai, P., Canto, C., Oudart, H., Brunyanszki, A., Cen, Y., Thomas, C., Yamamoto, H., Huber, A., Kiss, B., Houtkooper, R.H., et al. (2011). PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13, 461-468. https://doi.org/10.1016/j.cmet.2011.03.004
- Barger, P.M., Browning, A.C., Garner, A.N., and Kelly, D.P. (2001). p38 mitogen-activated protein kinase activates peroxisome proliferator- activated receptor alpha: a potential role in the cardiac metabolic stress response. J Biol. Chem. 276, 44495-44501. https://doi.org/10.1074/jbc.M105945200
- Bogenhagen, D.F. (2012). Mitochondrial DNA nucleoid structure. Biochim. Biophys. Acta. 1819, 914-920. https://doi.org/10.1016/j.bbagrm.2011.11.005
- Brachmann, C.B., Sherman, J.M., Devine, S.E., Cameron, E.E., Pillus, L., and Boeke, J.D. (1995). The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev. 9, 2888- 2902. https://doi.org/10.1101/gad.9.23.2888
- Brunet, A., Sweeney, L.B., Sturgill, J.F., Chua, K.F., Greer, P.L., Lin, Y., Tran, H., Ross, S.E., Mostoslavsky, R., Cohen, H.Y., Hu, L.S., Cheng, H.L., Jedrychowski, M.P., Gygi, S.P., Sinclair, D.A., Alt, F.W., and Greenberg, M.E. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011-2015. https://doi.org/10.1126/science.1094637
- Burnett, C. Valentini, S., Cabreiro, F., Goss, M., Somogyvari, M., Piper, M.D., Hoddinott, M., Sutphin, G.L., Leko, V., McElwee, J.J., et al. (2011). Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature 477, 482-485. https://doi.org/10.1038/nature10296
- Byles, V., Chmilewski, L.K., Wang, J., Zhu, L., Forman, L.W., Faller, D.V., and Dai, Y. (2010). Aberrant cytoplasm localization and protein stability of SIRT1 is regulated by PI3K/IGF-1R signaling in human cancer cells. Int. J. Biol. Sci. 6, 599-612.
- Campbell, C.T., Kolesar, J.E., and Kaufman, B.A. (2012). Mitochondrial transcription factor A regulates mitochondrial transcription initiation, DNA packaging, and genome copy number. Biochim. Biophys. Acta 1819, 921-929. https://doi.org/10.1016/j.bbagrm.2012.03.002
- Canto, C., and Auwerx, J. (2009). Caloric restriction, SIRT1 and longevity. Trends Endocrinol. Metab. 20, 325-331. https://doi.org/10.1016/j.tem.2009.03.008
- Canto, C., Gerhart-Hines, Z., Feige, J.N., Lagouge, M., Noriega, L., Milne, J.C., Elliott, P.J., Puigserver, P., and Auwerx, J. (2009). AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458, 1056-1060. https://doi.org/10.1038/nature07813
- Canto, C., Jiang, L.Q., Deshmukh, A.S., Mataki, C., Coste, A., Lagouge, M., Zierath, J.R., and Auwerx, J. (2010). Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab. 11, 213-219. https://doi.org/10.1016/j.cmet.2010.02.006
- Cheng, H.L., Mostoslavsky, R., Saito, S., Manis, J.P., Gu, Y., Patel, P., Bronson, R., Appella, E., Alt, F.W., and Chua, K.F. (2003). Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc. Natl. Acad. Sci. USA 100, 10794-10799. https://doi.org/10.1073/pnas.1934713100
- Civitarese, A.E., Carling, S., Heilbronn, L.K., Hulver, M.H., Ukropcova, B., Deutsch, W.A., Smith, S.R., Ravussin, E., and CALERIE Pennington Team (2007). Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 4, e76. https://doi.org/10.1371/journal.pmed.0040076
- Cui, L., Jeong, H., Borovecki, F., Parkhurst, C.N., Tanese, N., and Krainc, D. (2006). Transcriptional repression of PGC-1alpha by mutant huntingtin leads to mitochondrial dysfunction and neurodegeneration. Cell 127, 59-69. https://doi.org/10.1016/j.cell.2006.09.015
- Dasgupta, B., and Milbrandt, J. (2007). Resveratrol stimulates AMP kinase activity in neurons. Proc. Natl. Acad. Sci. USA 104, 7217- 7222. https://doi.org/10.1073/pnas.0610068104
- Dinkova-Kostova, A.T., Baird, L., Holmstrom, K.M., Meyer, C.J., and Abramov, A.Y. (2015). The spatiotemporal regulation of the Keap1-Nrf2 pathway and its importance in cellular bioenergetics. Biochem. Soc. Trans. 43, 602-610. https://doi.org/10.1042/BST20150003
- Dominy, J.E., Lee, Y., Gerhart-Hines, Z., and Puigserver, P. (2010). Nutrient-dependent regulation of PGC-1alpha's acetylation state and metabolic function through the enzymatic activities of Sirt1/GCN5. Biochim. Biophys. Acta 1804, 1676-1683. https://doi.org/10.1016/j.bbapap.2009.11.023
-
Donmez, G., Arun, A., Chung, C.Y., McLean, P.J., Lindquist, S., and Guarente, L. (2012). SIRT1 protects against
${\alpha}$ -synuclein aggregation by activating molecular chaperones. J. Neurosci. 32, 124- 132. https://doi.org/10.1523/JNEUROSCI.3442-11.2012 -
Dumont, M., Stack, C., Elipenahli, C., Jainuddin, S., Launay, N., Gerges, M., Starkova, N., Starkov, A.A., Calingasan, N.Y., Tampellini, D., Pujol, A., and Beal, M.F. (2014). PGC-
$1{\alpha}$ overexpression exacerbates${\beta}$ -amyloid and tau deposition in a transgenic mouse model of Alzheimer's disease. FASEB J. 28, 1745-1755. https://doi.org/10.1096/fj.13-236331 - Ebrahim, A.S., Ko, L.W., and Yen, S.H. (2010). Reduced expression of peroxisome-proliferator activated receptor gamma coactivator- 1alpha enhances alpha-synuclein oligomerization and down regulates AKT/GSK3beta signaling pathway in human neuronal cells that inducibly express alpha-synuclein. Neurosci. Lett. 473, 120-125. https://doi.org/10.1016/j.neulet.2010.02.034
- Eiyama, A., and Okamoto, K. (2015). PINK1/Parkin-mediated mitophagy in mammalian cells. Curr. Opin. Cell Biol. 33, 95-101. https://doi.org/10.1016/j.ceb.2015.01.002
- Fang, E.F., Scheibye-Knudsen, M., Brace, L.E., Kassahun, H., SenGupta, T., Nilsen, H., Mitchell, J.R., Croteau, D.L., and Bohr, V.A. (2014). Defective mitophagy in XPA via PARP-1 hyperactivation and NAD(+)/SIRT1 reduction. Cell 157, 882-896. https://doi.org/10.1016/j.cell.2014.03.026
- Feige, J.N., Lagouge, M., Canto, C., Strehle, A., Houten, S.M., Milne, J.C., Lambert, P.D., Mataki, C., Elliott, P.J., and Auwerx, J. (2008). Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab. 8, 347-358. https://doi.org/10.1016/j.cmet.2008.08.017
- Ferber, E.C., Peck, B., Delpuech, O., Bell, G.P., East, P., and Schulze, A. (2012). FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ. 19, 968-979. https://doi.org/10.1038/cdd.2011.179
- Garcia-Roves, P.M., Osler, M.E., Holmstrom, M.H., and Zierath, J.R. (2008). Gain-of-function R225Q mutation in AMP-activated protein kinase gamma3 subunit increases mitochondrial biogenesis in glycolytic skeletal muscle. J. Biol. Chem. 283, 35724-35734. https://doi.org/10.1074/jbc.M805078200
- Gerhart-Hines, Z., Rodgers, J.T., Bare, O., Lerin, C., Kim, S.H., Mostoslavsky, R., Alt, F.W., Wu, Z., and Puigserver, P. (2007). Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J. 26, 1913-1923. https://doi.org/10.1038/sj.emboj.7601633
- Ghosh, H.S., McBurney, M., and Robbins, P.D. (2010). SIRT1 negatively regulates the mammalian target of rapamycin. PLoS One 5, e9199. https://doi.org/10.1371/journal.pone.0009199
- Gomes, A.P., Price, N.L., Ling, A.J.Y., Moslehi, J.J., Montgomery, M.K., Rajman, L., White, J.P., Teodoro, J.S., Wrann, C.D., Hubbard, B.P., et al. (2013). Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155, 1624-1638. https://doi.org/10.1016/j.cell.2013.11.037
- Gregoretti, I.V., Lee, Y.M., and Goodson, H.V. (2004). Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J. Mol. Biol. 338, 17-31. https://doi.org/10.1016/j.jmb.2004.02.006
- Guarente, L. (2011). Sirtuins, aging, and metabolism. Cold Spring Harb. Symp. Quant. Biol. 76, 81-90. https://doi.org/10.1101/sqb.2011.76.010629
-
Gurd, B.J. (2011). Deacetylation of PGC-
$1{\alpha}$ by SIRT1: importance for skeletal muscle function and exercise-induced mitochondrial biogenesis. Appl. Physiol. Nutr. Metab. 36, 589-597. https://doi.org/10.1139/h11-070 - Gurd, B.J., Yoshida, Y., Lally, J., Holloway, G.P., and Bonen, A. (2009). The deacetylase enzyme SIRT1 is not associated with oxidative capacity in rat heart and skeletal muscle and its overexpression reduces mitochondrial biogenesis. J. Physiol. 587, 1817-1828. https://doi.org/10.1113/jphysiol.2008.168096
- Gurd, B.J., Yoshida, Y., McFarlan, J.T., Holloway, G.P., Moyes, C.D., Heigenhauser, G.J.F., Spriet, L., and Bonen, A. (2011). Nuclear SIRT1 activity, but not protein content, regulates mitochondrial biogenesis in rat and human skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R67-R75. https://doi.org/10.1152/ajpregu.00417.2010
- Haigis, M.C., and Guarente, L.P. (2006). Mammalian sirtuins-- emerging roles in physiology, aging, and calorie restriction. Genes Dev. 20, 2913-2921. https://doi.org/10.1101/gad.1467506
- Haigis, M.C., and Sinclair, D.A. (2010). Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 5, 253- 295. https://doi.org/10.1146/annurev.pathol.4.110807.092250
- Hallows, W.C., Lee, S., and Denu, J.M. (2006). Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. USA 103, 10230-10235. https://doi.org/10.1073/pnas.0604392103
- Han, M.K., Song, E.K., Guo, Y., Ou, X., Mantel, C., and Broxmeyer, H.E. (2008). SIRT1 regulates apoptosis and Nanog expression in mouse embryonic stem cells by controlling p53 subcellular localization. Cell Stem Cell 2, 241-251. https://doi.org/10.1016/j.stem.2008.01.002
- Hancock, C.R., Han, D.H., Higashida, K., Kim, S.H., and Holloszy, J.O. (2011). Does calorie restriction induce mitochondrial biogenesis? A reevaluation. FASEB J. 25, 785-791. https://doi.org/10.1096/fj.10-170415
- Hardie, D.G. (2011). Sensing of energy and nutrients by AMPactivated protein kinase. Am J. Clin. Nutr. 93, 891S-8916. https://doi.org/10.3945/ajcn.110.001925
-
Hathorn, T., Snyder-Keller, A., and Messer, A. (2011). Nicotinamide improves motor deficits and upregulates PGC-
$1{\alpha}$ and BDNF gene expression in a mouse model of Huntington's disease. Neurobiol. Dis. 41, 43-50. https://doi.org/10.1016/j.nbd.2010.08.017 - Herranz, D., Munoz-Martin, M., Canamero, M., Mulero, F., Martinez- Pastor, B., Fernandez-Capetillo, O., and Serrano, M. (2010). Sirt1 improves healthy ageing and protects from metabolic syndrome- associated cancer. Nat. Commun. 1, 3.
-
Higashida, K., Kim, S.H., Jung, S.R., Asaka, M., Holloszy, J.O., and Han, D.H. (2013). Effects of resveratrol and SIRT1 on PGC-
$1{\alpha}$ activity and mitochondrial biogenesis: A reevaluation. PLoS Biol. 11, e1001603. https://doi.org/10.1371/journal.pbio.1001603 - Hong, S., Zhao, B., Lombard, D.B., Fingar, D.C., and Inoki, K. (2014). Cross-talk between sirtuin and mammalian target of rapamycin complex 1 (mTORC1) signaling in the regulation of S6 kinase 1 (S6K1) phosphorylation. J. Biol. Chem. 289, 13132- 13141. https://doi.org/10.1074/jbc.M113.520734
- Hou, X., Xu, S., Maitland-Toolan, K.A., Sato, K., Jiang, B., Ido, Y., Lan, F., Walsh, K., Wierzbicki, M., Verbeuren, T.J., et al. (2008). SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J. Biol. Chem. 283, 20015-20026. https://doi.org/10.1074/jbc.M802187200
- Howitz, K.T., Bitterman, K.J., Cohen, H.Y., Lamming, D.W., Lavu, S., Wood, J.G., Zipkin, R.E., Chung, P., Kisielewski, A., Zhang, L.L., et al. (2003). Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 425, 191-196. https://doi.org/10.1038/nature01960
- Hubbard, B.P., Gomes, A.P., Dai, H., Li, J., Case, A.W., Considine, T., Riera, T.V., Lee, J.E., E, S.Y., Lamming, D.W., et al. (2013). Evidence for a common mechanism of SIRT1 regulation by allosteric activators. Science 339, 1216-1219. https://doi.org/10.1126/science.1231097
- Jackson, M.D., and Denu, J.M. (2002). Structural identification of 2'- and 3'-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of beta -NAD+-dependent histone/protein deacetylases. J. Biol. Chem. 277, 18535-18544. https://doi.org/10.1074/jbc.M200671200
- Jacobs, K.M., Pennington, J.D., Bisht, K.S., Aykin-Burns, N., Kim, H.S., Mishra, M., Sun, L., Nguyen, P., Ahn, B.H., Leclerc, J., et al. (2008). SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression. Int. J. Biol. Sci. 4, 291-299.
- Jager, S., Handschin, C., St-Pierre, J., and Spiegelman, B.M. (2007). AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc. Natl. Acad. Sci. USA 104, 12017-12022. https://doi.org/10.1073/pnas.0705070104
- Jang, S.Y., Kang, H.T., and Hwang, E.S. (2012). Nicotinamideinduced mitophagy: event mediated by high NAD+/NADH ratio and SIRT1 protein activation. J. Biol. Chem. 287, 19304-19314. https://doi.org/10.1074/jbc.M112.363747
- Jin, Q., Yan, T., Ge, X., Sun, C., Shi, X., and Zhai, Q. (2007). Cytoplasm- localized SIRT1 enhances apoptosis. J. Cell. Physiol. 213, 88-97. https://doi.org/10.1002/jcp.21091
- Kaeberlein, M., McDonagh, T., Heltweg, B., Hixon, J., Westman, E.A., Caldwell, S.D., Napper, A., Curtis, R., DiStefano, P.S., Fields, S., et al. (2005). Substrate-specific activation of sirtuins by resveratrol. J. Biol. Chem. 280, 17038-17045. https://doi.org/10.1074/jbc.M500655200
- Kang, H.T., and Hwang, E.S. (2009). Nicotinamide enhances mitochondria quality through autophagy activation in human cells. Aging Cell 8, 426-438. https://doi.org/10.1111/j.1474-9726.2009.00487.x
- Kawai, Y., Garduno, L., Theodore, M., Yang, J., and Arinze, I.J. (2011). Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization. J. Biol. Chem. 286, 7629-7640. https://doi.org/10.1074/jbc.M110.208173
- Kim, H., Yang, J., Kim, M.J., Choi, S., Chung, J.R., Kim, J.M., Yoo, Y.H., Chung, J., and Koh, H. (2015). Tumor necrosis factor receptor- associated protein 1 (TRAP1) mutation and TRAP1 inhibitor gamitrinib-triphenylphosphonium (G-TPP) induce a forkhead box O (FOXO)-dependent cell protective signal from mitochondria. J. Biol. Chem. (in press).
- Koh, H., Kim, H., Kim, M.J., Park, J., Lee, H.J., and Chung, J. (2012). Silent information regulator 2 (Sir2) and Forkhead box O (FOXO) complement mitochondrial dysfunction and dopaminergic neuron loss in Drosophila PTEN-induced kinase 1 (PINK1) null mutant. J. Biol. Chem. 287, 12750-12758. https://doi.org/10.1074/jbc.M111.337907
- Kukidome, D., Nishikawa, T., Sonoda, K., Imoto, K., Fujisawa, K., Yano, M., Motoshima, H., Taguchi, T., Matsumura, T., and Araki, E. (2006). Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes 55, 120-127. https://doi.org/10.2337/diabetes.55.01.06.db05-0943
-
La Spada, A.R. (2012). PPARGC1A/PGC-
$1{\alpha}$ , TFEB and enhanced proteostasis in Huntington disease: defining regulatory linkages between energy production and protein-organelle quality control. Autophagy 8, 1845-1847. https://doi.org/10.4161/auto.21862 - Lagouge, M., Argmann, C., Gerhart-Hines, Z., Meziane, H., Lerin, C., Daussin, F., Messadeq, N., Milne, J., Lambert, P., Elliott, P., et al. (2006). Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127, 1109-1122. https://doi.org/10.1016/j.cell.2006.11.013
- Lan, F., Cacicedo, J.M., Ruderman, N., and Ido, Y. (2008). SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J. Biol. Chem. 283, 27628-27635. https://doi.org/10.1074/jbc.M805711200
- Leick, L., Fentz, J., Bienso, R.S., Knudsen, J.G., Jeppesen, J., Kiens, B., Wojtaszewski, J.F.P., and Pilegaard, H. (2010). PGC- 1{alpha} is required for AICAR-induced expression of GLUT4 and mitochondrial proteins in mouse skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 299, E456-E465. https://doi.org/10.1152/ajpendo.00648.2009
- Li, X., Monks, B., Ge, Q., and Birnbaum, M.J. (2007). Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. Nature 447, 1012-1016. https://doi.org/10.1038/nature05861
- Lim, J.H., Lee, Y.M., Chun, Y.S., Chen, J., Kim, J.E., and Park, J.W. (2010). Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol. Cell 38, 864- 878. https://doi.org/10.1016/j.molcel.2010.05.023
- Liu, M., Wilk, S.A., Wang, A., Zhou, L., Wang, R.H., Ogawa, W., Deng, C., Dong, L.Q., and Liu, F. (2010). Resveratrol inhibits mTOR signaling by promoting the interaction between mTOR and DEPTOR. J. Biol. Chem. 285, 36387-36394. https://doi.org/10.1074/jbc.M110.169284
- Longo, V.D. (2009). Linking sirtuins, IGF-I signaling, and starvation. Exp. Gerontol. 44, 70-74. https://doi.org/10.1016/j.exger.2008.06.005
- Luo, J., Nikolaev, A.Y., Imai, S., Chen, D., Su, F., Shiloh, A., Guarente, L., and Gu, W. (2001). Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107, 137-148. https://doi.org/10.1016/S0092-8674(01)00524-4
- McBurney, M.W., Yang, X., Jardine, K., Hixon, M., Boekelheide, K., Webb, J.R., Lansdorp, P.M., and Lemieux, M. (2003). The mammalian SIR2alpha protein has a role in embryogenesis and gametogenesis. Mol. Cell Biol. 23, 38-54. https://doi.org/10.1128/MCB.23.1.38-54.2003
- Meshkini, A., and Yazdanparast, R. (2012). Foxo3a targets mitochondria during guanosine 5'-triphosphate guided erythroid differentiation. Int. J. Biochem. Cell Biol. 44, 1718-1728. https://doi.org/10.1016/j.biocel.2012.06.023
- Michishita, E., Park, J.Y., Burneskis, J.M., Barrett, J.C., and Horikawa, I. (2005). Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell. 16, 4623-4635. https://doi.org/10.1091/mbc.E05-01-0033
- Mishra, P., and Chan, D.C. (2014). Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15, 634-646. https://doi.org/10.1038/nrm3877
- Mitchell, S.J., Martin-Montalvo, A., Mercken, E.M., Palacios, H.H., Ward, T.M., Abulwerdi, G., Minor, R.K., Vlasuk, G.P., Ellis, J.L., Sinclair, D.A., et al. (2014). The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep. 6, 836-843. https://doi.org/10.1016/j.celrep.2014.01.031
- Mouchiroud, L., Houtkooper, R.H., Moullan, N., Katsyuba, E., Ryu, D., Canto, C., Mottis, A., Jo, Y.S., Viswanathan, M., Schoonjans, K., et al. (2013). The NAD(+)/Sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154, 430-441. https://doi.org/10.1016/j.cell.2013.06.016
-
Mudo, G., Makela, J., Di Liberto, V., Tselykh, T.V., Olivieri, M., Piepponen, P., Eriksson, O., Malkia, A., Bonomo, A., Kairisalo, M., et al. (2012). Transgenic expression and activation of PGC-1
${\alpha}$ protect dopaminergic neurons in the MPTP mouse model of Parkinson's disease. Cell. Mol. Life Sci. 69, 1153-1165. https://doi.org/10.1007/s00018-011-0850-z - Mullin, S., and Schapira, A. (2015). The genetics of Parkinson's disease. Br Med. Bull. 114, 39-52. https://doi.org/10.1093/bmb/ldv022
- Murayama, A., Ohmori, K., Fujimura, A., Minami, H., Yasuzawa- Tanaka, K., Kuroda, T., Oie, S., Daitoku, H., Okuwaki, M., Nagata, K., et al. (2008). Epigenetic control of rDNA loci in response to intracellular energy status. Cell 133, 627-639. https://doi.org/10.1016/j.cell.2008.03.030
- Nemoto, S., Fergusson, M.M., and Finkel, T. (2005). SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J. Biol. Chem. 280, 16456-16460. https://doi.org/10.1074/jbc.M501485200
- Ng, F., and Tang, B.L. (2013). Sirtuins' modulation of autophagy. J. Cell. Physiol. 228, 2262-2270. https://doi.org/10.1002/jcp.24399
- Ng, F., Wijaya, L., and Tang, B.L. (2015). SIRT1 in the brainconnections with aging-associated disorders and lifespan. Front. Cell Neurosci. 9, 64.
- Nisoli, E., Tonello, C., Cardile, A., Cozzi, V., Bracale, R., Tedesco, L., Falcone, S., Valerio, A., Cantoni, O., Clementi, E., et al. (2005). Calorie restriction promotes mitochondrial biogenesis by inducing the expression of eNOS. Science 310, 314-317. https://doi.org/10.1126/science.1117728
-
Olmos, Y., Sanchez-Gomez, F.J., Wild, B., Garcia-Quintans, N., Cabezudo, S., Lamas, S., and Monsalve, M. (2013). SirT1 regulation of antioxidant genes is dependent on the formation of a FoxO3a/PGC-
$1{\alpha}$ complex. Antioxid. Redox Signal. 19, 1507- 1521. https://doi.org/10.1089/ars.2012.4713 - Ou, X., Lee, M.R., Huang, X., Messina-Graham, S., and Broxmeyer, H.E. (2014). SIRT1 positively regulates autophagy and mitochondria function in embryonic stem cells under oxidative stress. Stem Cells 32, 1183-1194. https://doi.org/10.1002/stem.1641
-
Pacelli, C., De Rasmo, D., Signorile, A., Grattagliano, I., di Tullio, G., D'Orazio, A., Nico, B., Comi, G.P., Ronchi, D., Ferranini, E., et al. (2011). Mitochondrial defect and PGC-
$1{\alpha}$ dysfunction in parkinassociated familial Parkinson's disease. Biochim. Biophys. Acta 1812, 1041-1053. https://doi.org/10.1016/j.bbadis.2010.12.022 - Pacholec, M., Bleasdale, J.E., Chrunyk, B., Cunningham, D., Flynn, D., Garofalo, R.S., Griffith, D., Griffor, M., Loulakis, P., Pabst, B., et al. (2010). SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J. Biol. Chem. 285, 8340- 8351. https://doi.org/10.1074/jbc.M109.088682
- Papandreou, I., Cairns, R.A., Fontana, L., Lim, A.L., and Denko, N.C. (2006). HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3, 187-197. https://doi.org/10.1016/j.cmet.2006.01.012
- Park, S.J., Ahmad, F., Philp, A., Baar, K., Williams, T., Luo, H., Ke, H., Rehmann, H., Taussig, R., Brown, A.L., et al. (2012). Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148, 421-433. https://doi.org/10.1016/j.cell.2012.01.017
- Philp, A., Chen, A., Lan, D., Meyer, G.A., Murphy, A.N., Knapp, A.E., Olfert, I.M., McCurdy, C.E., Marcotte, G.R., Hogan, M.C., et al. (2011). Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) deacetylation following endurance exercise. J. Biol. Chem. 286, 30561-30570. https://doi.org/10.1074/jbc.M111.261685
- Picard, F., Kurtev, M., Chung, N., Topark-Ngarm, A., Senawong, T., Machado De Oliveira, R., Leid, M., McBurney, M.W., and Guarente, L. (2004). Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma. Nature 429, 771-776. https://doi.org/10.1038/nature02583
- Price, N.L., Gomes, A.P., Ling, A.J., Duarte, F.V., Martin-Montalvo, A., North, B.J., Agarwal, B., Ye, L., Ramadori, G., Teodoro, J.S., et al. (2012). SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 15, 675-690. https://doi.org/10.1016/j.cmet.2012.04.003
- Reznick, R.M., and Shulman, G.I. (2006). The role of AMP-activated protein kinase in mitochondrial biogenesis. J. Physiol. 574, 33- 39. https://doi.org/10.1113/jphysiol.2006.109512
- Reznick, R.M., Zong, H., Li, J., Morino, K., Moore, I.K., Yu, H.J., Liu, Z.X., Dong, J., Mustard, K.J., Hawley, S.A., et al. (2007). Agingassociated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab. 5, 151-156. https://doi.org/10.1016/j.cmet.2007.01.008
- Rodgers, J.T., Lerin, C., Haas, W., Gygi, S.P., Spiegelman, B.M., and Puigserver, P. (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434, 113-118. https://doi.org/10.1038/nature03354
- Rogina, B., and Helfand, S.L. (2004). Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc. Natl. Acad. Sci. USA. 101, 15998-16003. https://doi.org/10.1073/pnas.0404184101
-
Rona-Voros, K., and Weydt, P. (2010). The role of PGC-
$1{\alpha}$ in the pathogenesis of neurodegenerative disorders. Curr. Drug Targets 11, 1262-1269. https://doi.org/10.2174/1389450111007011262 - Ross, C.A., and Tabrizi, S.J. (2011). Huntington's disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 10, 83-98. https://doi.org/10.1016/S1474-4422(10)70245-3
-
Sampaio-Marques, B., Felgueiras, C., Silva, A., Rodrigues, M., Tenreiro, S., Franssens, V., Reichert, A.S., Outeiro, T.F., Winderickx, J., and Ludovico, P. (2012). SNCA (
${\alpha}$ -synuclein)-induced toxicity in yeast cells is dependent on sirtuin 2 (Sir2)-mediated mitophagy. Autophagy 8, 1494-1509. https://doi.org/10.4161/auto.21275 - Satoh, A., Brace, C.S., Rensing, N., Cliften, P., Wozniak, D.F., Herzog, E.D., Yamada, K.A., and Imai, S.I. (2013). Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox 1 in the DMH and LH. Cell Metab. 18, 416-430. https://doi.org/10.1016/j.cmet.2013.07.013
-
Shin, J.H., Ko, H.S., Kang, H., Lee, Y., Lee, Y.I., Pletinkova, O., Troconso, J.C., Dawson, V.L., and Dawson, T.M. (2011). PARIS (ZNF746) repression of PGC-
$1{\alpha}$ contributes to neurodegeneration in Parkinson's disease. Cell 144, 689-702. https://doi.org/10.1016/j.cell.2011.02.010 - Sinclair, D.A., and Guarente, L. (1997). Extrachromosomal rDNA circles--a cause of aging in yeast. Cell 91, 1033-1042. https://doi.org/10.1016/S0092-8674(00)80493-6
- Stotland, A., and Gottlieb, R.A. (2015). Mitochondrial quality control: Easy come, easy go. Biochim. Biophys. Acta 1853, 2802-2811. https://doi.org/10.1016/j.bbamcr.2014.12.041
- Sugden, M.C., Caton, P.W., and Holness, M.J. (2010). PPAR control: it's SIRTainly as easy as PGC. J. Endocrinol. 204, 93-104. https://doi.org/10.1677/JOE-09-0359
- Suzuki, M., and Bartlett, J.D. (2014). Sirtuin1 and autophagy protect cells from fluoride-induced cell stress. Biochim. Biophys. Acta 1842, 245-255. https://doi.org/10.1016/j.bbadis.2013.11.023
-
Tadaishi, M., Miura, S., Kai, Y., Kawasaki, E., Koshinaka, K., Kawanaka, K., Nagata, J., Oishi, Y., and Ezaki, O. (2011). Effect of exercise intensity and AICAR on isoform-specific expressions of murine skeletal muscle PGC-
$1{\alpha}$ mRNA: a role of${\beta}_2$ -adrenergic receptor activation. Am. J. Physiol. Endocrinol. Metab. 300, E341-E349. https://doi.org/10.1152/ajpendo.00400.2010 - Tang, B.L. (2006). SIRT1, neuronal cell survival and the insulin/IGF- 1 aging paradox. Neurobiol. Aging 27, 501-505. https://doi.org/10.1016/j.neurobiolaging.2005.02.001
- Tang, B.L. (2009). Sirt1's complex roles in neuroprotection. Cell Mol. Neurobiol. 29, 1093-1103. https://doi.org/10.1007/s10571-009-9414-2
- Tanner, K.G., Landry, J., Sternglanz, R., and Denu, J.M. (2000). Silent information regulator 2 family of NAD- dependent histone/ protein deacetylases generates a unique product, 1-Oacetyl- ADP-ribose. Proc. Natl. Acad. Sci. USA 97, 14178-14182. https://doi.org/10.1073/pnas.250422697
- Tanno, M., Sakamoto, J., Miura, T., Shimamoto, K., and Horio, Y. (2007). Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1. J. Biol. Chem. 282, 6823-6832. https://doi.org/10.1074/jbc.M609554200
- Tissenbaum, H.A., and Guarente, L. (2001). Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227-230. https://doi.org/10.1038/35065638
-
Tsunemi, T., and La Spada, A.R. (2012). PGC-
$1{\alpha}$ at the intersection of bioenergetics regulation and neuron function: from Huntington's disease to Parkinson's disease and beyond. Prog Neurobiol. 97, 142-151. https://doi.org/10.1016/j.pneurobio.2011.10.004 - Um, J.H., Park, S.J., Kang, H., Yang, S., Foretz, M., McBurney, M.W., Kim, M.K., Viollet, B., and Chung, J.H. (2010). AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes 59, 554-563. https://doi.org/10.2337/db09-0482
- Vaquero, A., Scher, M.B., Lee, D.H., Sutton, A., Cheng, H.L., Alt, F.W., Serrano, L., Sternglanz, R., and Reinberg, D. (2006). SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis. Genes Dev. 20, 1256-1261. https://doi.org/10.1101/gad.1412706
- Vaquero, A., Scher, M., Erdjument-Bromage, H., Tempst, P., Serrano, L., and Reinberg, D. (2007). SIRT1 regulates the histone methyl-transferase SUV39H1 during heterochromatin formation. Nature 450, 440-444. https://doi.org/10.1038/nature06268
- Vaziri, H., Dessain, S.K., Ng Eaton, E., Imai, S.I., Frye, R.A., Pandita, T.K., Guarente, L., and Weinberg, R.A. (2001). hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107, 149-159. https://doi.org/10.1016/S0092-8674(01)00527-X
- Vega, R.B., Horton, J.L., and Kelly, D.P. (2015). Maintaining Ancient Organelles: Mitochondrial Biogenesis and Maturation. Circ. Res. 116, 1820-1834. https://doi.org/10.1161/CIRCRESAHA.116.305420
- Verdin, E., and Ott, M. (2015). 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat. Rev. Mol. Cell Biol. 16, 258-264. https://doi.org/10.1038/nrm3931
- Webb, A.E., and Brunet, A. (2014). FOXO transcription factors: key regulators of cellular quality control. Trends. Biochem. Sci. 39, 159-169. https://doi.org/10.1016/j.tibs.2014.02.003
- Wood, J.G., Rogina, B., Lavu, S., Howitz, K., Helfand, S.L., Tatar, M., and Sinclair, D. (2004). Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature. 430, 686-689. https://doi.org/10.1038/nature02789
- Yang, X.J., and Seto, E. (2008). The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat. Rev. Mol. Cell Biol. 9, 206-218.
- Yeung, F., Hoberg, J.E., Ramsey, C.S., Keller, M.D., Jones, D.R., Frye, R.A., and Mayo, M.W. (2004). Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369-2380. https://doi.org/10.1038/sj.emboj.7600244
- Yoshii, S.R., and Mizushima, N. (2015). Autophagy machinery in the context of mammalian mitophagy. Biochim. Biophys. Acta 1853, 2797-2801. https://doi.org/10.1016/j.bbamcr.2015.01.013
- Zhang, Y., Zhang, M., Dong, H., Yong, S., Li, X., Olashaw, N., Kruk, P.A., Cheng, J.Q., Bai, W., Chen, J., et al. (2009). Deacetylation of cortactin by SIRT1 promotes cell migration. Oncogene 28, 445-460. https://doi.org/10.1038/onc.2008.388
- Zhang, F., Wang, S., Gan, L., Vosler, P.S., Gao, Y., Zigmond, M.J., and Chen, J. (2011). Protective effects and mechanisms of sirtuins in the nervous system. Prog. Neurobiol. 95, 373-395. https://doi.org/10.1016/j.pneurobio.2011.09.001
-
Zheng, B., Liao, Z., Locascio, J.J., Lesniak, K.A., Roderick, S.S., Watt, M.L., Eklund, A.C., Zhang-James, Y., Kim, P.D., Hauser, M.A., et al. (2010). PGC-
$1{\alpha}$ , a potential therapeutic target for early intervention in Parkinson's disease. Sci. Transl. Med. 2, 52ra73. - Zong, H., Ren, J.M., Young, L.H., Pypaert, M., Mu, J., Birnbaum, M.J., and Shulman, G.I. (2002). AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc. Natl. Acad. Sci. USA 99, 15983-15987. https://doi.org/10.1073/pnas.252625599
- Zu, Y., Liu, L., Lee, M.Y.K., Xu, C., Liang, Y., Man, R.Y., Vanhoutte, P.M., and Wang, Y. (2010). SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells. Circ. Res. 106, 1384-1393. https://doi.org/10.1161/CIRCRESAHA.109.215483
Cited by
- Therapeutic role of sirtuins in neurodegenerative disease and their modulation by polyphenols vol.73, 2017, https://doi.org/10.1016/j.neubiorev.2016.11.022
- Depigmenting Effect of Resveratrol Is Dependent on FOXO3a Activation without SIRT1 Activation vol.18, pp.6, 2017, https://doi.org/10.3390/ijms18061213
- Impaired AMPK Activity Drives Age-Associated Acute Lung Injury after Hemorrhage vol.56, pp.5, 2017, https://doi.org/10.1165/rcmb.2017-0023ED
- Cryptotanshinone promotes commitment to the brown adipocyte lineage and mitochondrial biogenesis in C3H10T1/2 mesenchymal stem cells via AMPK and p38-MAPK signaling vol.1862, pp.10, 2017, https://doi.org/10.1016/j.bbalip.2017.08.001
- Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity vol.18, pp.8, 2017, https://doi.org/10.3390/ijms18081821
- Melatonin, clock genes and mitochondria in sepsis 2017, https://doi.org/10.1007/s00018-017-2610-1
- PINK1 signaling in mitochondrial homeostasis and in aging (Review) vol.39, pp.1, 2017, https://doi.org/10.3892/ijmm.2016.2827
- Sirtuins as modifiers of Parkinson's disease pathology vol.95, pp.4, 2017, https://doi.org/10.1002/jnr.23806
- Mitochondria as pharmacological targets in Down syndrome 2018, https://doi.org/10.1016/j.freeradbiomed.2017.08.014
- The intracellular angiotensin system buffers deleterious effects of the extracellular paracrine system vol.8, pp.9, 2017, https://doi.org/10.1038/cddis.2017.439
- Could Sirtuin Activities Modify ALS Onset and Progression? vol.37, pp.7, 2017, https://doi.org/10.1007/s10571-016-0452-2
- Treadmill Exercise Attenuates α-Synuclein Levels by Promoting Mitochondrial Function and Autophagy Possibly via SIRT1 in the Chronic MPTP/P-Induced Mouse Model of Parkinson’s Disease vol.32, pp.3, 2017, https://doi.org/10.1007/s12640-017-9770-5
- VDAC1 deacetylation is involved in the protective effects of resveratrol against mitochondria-mediated apoptosis in cardiomyocytes subjected to anoxia/reoxygenation injury vol.95, 2017, https://doi.org/10.1016/j.biopha.2017.08.046
- Loss of BRG1 induces CRC cell senescence by regulating p53/p21 pathway vol.8, pp.2, 2017, https://doi.org/10.1038/cddis.2017.1
- Concentration-dependent metabolic effects of metformin in healthy and Fanconi anemia lymphoblast cells 2017, https://doi.org/10.1002/jcp.26085
- Linking mitochondrial dysfunction to neurodegeneration in lysosomal storage diseases vol.40, pp.5, 2017, https://doi.org/10.1007/s10545-017-0048-0
- Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders vol.42, pp.3, 2017, https://doi.org/10.1007/s11064-016-2110-y
- Angiotensin II Type 1 Receptor‐Associated Protein Regulates Kidney Aging and Lifespan Independent of Angiotensin vol.6, pp.8, 2017, https://doi.org/10.1161/JAHA.117.006120
- Catalpol attenuates oxidative stress and promotes autophagy in TNF-α-exposed HAECs by up-regulating AMPK vol.7, pp.83, 2017, https://doi.org/10.1039/C7RA09085D
- Reduction in podocyte SIRT1 accelerates kidney injury in aging mice vol.313, pp.3, 2017, https://doi.org/10.1152/ajprenal.00255.2017
- Biological Activities of Stilbenoids vol.19, pp.3, 2018, https://doi.org/10.3390/ijms19030792
- PGC1α: Friend or Foe in Cancer? vol.9, pp.1, 2018, https://doi.org/10.3390/genes9010048
- Sirt1: A Guardian of the Development of Diabetic Retinopathy vol.67, pp.4, 2018, https://doi.org/10.2337/db17-0996
- Emerging Players at the Intersection of Chondrocyte Loss of Maturational Arrest, Oxidative Stress, Senescence and Low-Grade Inflammation in Osteoarthritis vol.2018, pp.1942-0994, 2018, https://doi.org/10.1155/2018/3075293
- Xanthohumol, a hop-derived prenylflavonoid present in beer, impairs mitochondrial functionality of SW620 colon cancer cells pp.1465-3478, 2018, https://doi.org/10.1080/09637486.2018.1540558
- Brain SIRT1 Mediates Metabolic Homeostasis and Neuroprotection vol.9, pp.1664-2392, 2018, https://doi.org/10.3389/fendo.2018.00702
- High-intensity interval training (HIIT) effectively enhances heart function via miR-195 dependent cardiomyopathy reduction in high-fat high-fructose diet-induced diabetic rats pp.1744-4160, 2020, https://doi.org/10.1080/13813455.2018.1511599
- Augmenter of liver regeneration promotes mitochondrial biogenesis in renal ischemia–reperfusion injury vol.23, pp.11-12, 2018, https://doi.org/10.1007/s10495-018-1487-2
- Understanding the Role of Dysfunctional and Healthy Mitochondria in Stroke Pathology and Its Treatment vol.19, pp.7, 2018, https://doi.org/10.3390/ijms19072127
- Resveratrol Induces Brain Resilience Against Alzheimer Neurodegeneration Through Proteostasis Enhancement pp.1559-1182, 2018, https://doi.org/10.1007/s12035-018-1157-y
- Detection of Insertions/Deletions Within SIRT1, SIRT2 and SIRT3 Genes and Their Associations with Body Measurement Traits in Cattle pp.1573-4927, 2018, https://doi.org/10.1007/s10528-018-9868-3
- Idiopathic Pulmonary Fibrosis: Aging, Mitochondrial Dysfunction, and Cellular Bioenergetics vol.5, pp.2296-858X, 2018, https://doi.org/10.3389/fmed.2018.00010
- The Endoplasmic Reticulum Stress Response in Neuroprogressive Diseases: Emerging Pathophysiological Role and Translational Implications pp.1559-1182, 2018, https://doi.org/10.1007/s12035-018-1028-6
- vol.9, pp.5, 2019, https://doi.org/10.1039/C8RA09482A
- Redox-regulation and life-history trade-offs: scavenging mitochondrial ROS improves growth in a wild bird vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-38535-5
- SIRT1 in forebrain excitatory neurons produces sexually dimorphic effects on depression-related behaviors and modulates neuronal excitability and synaptic transmission in the medial prefrontal cortex pp.1476-5578, 2020, https://doi.org/10.1038/s41380-019-0352-1
- gene and growth traits in Chinese cattle pp.1532-2378, 2019, https://doi.org/10.1080/10495398.2018.1520716
- SIRT1 as a therapeutic target for Alzheimer’s disease vol.27, pp.8, 2016, https://doi.org/10.1515/revneuro-2016-0023
- SIRT1 as a therapeutic target for Alzheimer’s disease vol.27, pp.8, 2016, https://doi.org/10.1515/revneuro-2016-0023
- Utrophin influences mitochondrial pathology and oxidative stress in dystrophic muscle vol.7, pp.1, 2016, https://doi.org/10.1186/s13395-017-0139-5
- Pyrroloquinoline Quinone, a Redox-Active o-Quinone, Stimulates Mitochondrial Biogenesis by Activating the SIRT1/PGC-1α Signaling Pathway vol.56, pp.50, 2016, https://doi.org/10.1021/acs.biochem.7b01185
- Structural Modification of (−)-Epigallocatechin Gallate (EGCG) Shows Significant Enhancement in Mitochondrial Biogenesis vol.66, pp.15, 2018, https://doi.org/10.1021/acs.jafc.8b00364
- Identification and Characterization of Novel Receptor-Interacting Serine/Threonine‐Protein Kinase 2 Inhibitors Using Structural Similarity Analysis vol.365, pp.2, 2016, https://doi.org/10.1124/jpet.117.247163
- Mitochondrial targeting as a novel therapy for stroke vol.4, pp.3, 2016, https://doi.org/10.4103/bc.bc_14_18
- Resveratrol inhibits paclitaxel-induced neuropathic pain by the activation of PI3K/Akt and SIRT1/PGC1α pathway vol.12, pp.None, 2016, https://doi.org/10.2147/jpr.s185873
- Energy-Sensing Pathways in Ischemia: The Counterbalance Between AMPK and mTORC vol.25, pp.45, 2019, https://doi.org/10.2174/1381612825666191210152156
- Perspective: Mitochondria-ER Contacts in Metabolic Cellular Stress Assessed by Microscopy vol.8, pp.1, 2016, https://doi.org/10.3390/cells8010005
- Variations in HPV function are associated with survival in squamous cell carcinoma vol.4, pp.1, 2016, https://doi.org/10.1172/jci.insight.124762
- AMPK-Targeted Effector Networks in Mycobacterial Infection vol.10, pp.None, 2016, https://doi.org/10.3389/fmicb.2019.00520
- Mitochondria, Telomeres and Telomerase Subunits vol.7, pp.None, 2016, https://doi.org/10.3389/fcell.2019.00274
- Further investigation of mitochondrial biogenesis and gene expression of key regulators in ascites- susceptible and ascites- resistant broiler research lines vol.14, pp.3, 2016, https://doi.org/10.1371/journal.pone.0205480
- Nobiletin ameliorates hepatic ischemia and reperfusion injury through the activation of SIRT-1/FOXO3a-mediated autophagy and mitochondrial biogenesis vol.51, pp.4, 2019, https://doi.org/10.1038/s12276-019-0245-z
- Salidroside attenuates oxidized low-density lipoprotein-induced endothelial cell injury via promotion of the AMPK/SIRT1 pathway vol.43, pp.6, 2019, https://doi.org/10.3892/ijmm.2019.4153
- Sirtuin 1 Regulates Mitochondrial Biogenesis and Provides an Endogenous Neuroprotective Mechanism Against Seizure-Induced Neuronal Cell Death in the Hippocampus Following Status Epilepticus vol.20, pp.14, 2016, https://doi.org/10.3390/ijms20143588
- Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure vol.25, pp.7, 2016, https://doi.org/10.1111/cns.13116
- MicroRNA-34a (miR-34a) Mediates Retinal Endothelial Cell Premature Senescence through Mitochondrial Dysfunction and Loss of Antioxidant Activities vol.8, pp.9, 2016, https://doi.org/10.3390/antiox8090328
- Microglia Activated by Excess Cortisol Induce HMGB1 Acetylation and Neuroinflammation in the Hippocampal DG Region of Mice Following Cold Exposure vol.9, pp.9, 2016, https://doi.org/10.3390/biom9090426
- Melatonin Effects on Non-Alcoholic Fatty Liver Disease Are Related to MicroRNA-34a-5p/Sirt1 Axis and Autophagy vol.8, pp.9, 2016, https://doi.org/10.3390/cells8091053
- Mitochondrial dysfunction and chronic lung disease vol.35, pp.6, 2019, https://doi.org/10.1007/s10565-019-09473-9
- Adaptive effects of gestational caloric restriction in the mitochondria of Wistar rats’ brain: A DOHaD approach vol.79, pp.None, 2016, https://doi.org/10.1016/j.ijdevneu.2019.09.004
- Sirtuins and diabetes: optimizing the sweetness in the blood vol.4, pp.1, 2016, https://doi.org/10.1186/s41231-019-0034-7
- Resveratrol and Oxyresveratrol Activate Thermogenesis via Different Transcriptional Coactivators in High-Fat Diet-Induced Obese Mice vol.67, pp.49, 2016, https://doi.org/10.1021/acs.jafc.9b05963
- Calcitonin Gene-Related Peptide Attenuates LPS-Induced Acute Kidney Injury by Regulating Sirt1 vol.26, pp.None, 2016, https://doi.org/10.12659/msm.923900
- Epigallocatechin-3-gallate preconditioned Adipose-derived Stem Cells confer Neuroprotection in aging rat brain vol.17, pp.13, 2016, https://doi.org/10.7150/ijms.46696
- Methylglyoxal-Dependent Glycative Stress and Deregulation of SIRT1 Functional Network in the Ovary of PCOS Mice vol.9, pp.1, 2016, https://doi.org/10.3390/cells9010209
- Accelerated Kidney Aging in Diabetes Mellitus vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/1234059
- PGC-1 α , Inflammation, and Oxidative Stress: An Integrative View in Metabolism vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/1452696
- Chronic Royal Jelly Administration Induced Antidepressant-Like Effects Through Increased Sirtuin1 and Oxidative Phosphorylation Protein Expression in the Amygdala of Mice vol.13, pp.None, 2016, https://doi.org/10.2174/1874467213666200424160153
- Sildenafil for the Treatment of Alzheimer’s Disease: A Systematic Review vol.4, pp.1, 2016, https://doi.org/10.3233/adr-200166
- Phosphodiesterase Inhibitors for Alzheimer’s Disease: A Systematic Review of Clinical Trials and Epidemiology with a Mechanistic Rationale vol.4, pp.1, 2016, https://doi.org/10.3233/adr-200191
- Transcription-based circadian mechanism controls the duration of molecular clock states in response to signaling inputs vol.484, pp.None, 2020, https://doi.org/10.1016/j.jtbi.2019.110015
- Cognitive Protective Mechanism of Crocin Pretreatment in Rat Submitted to Acute High-Altitude Hypoxia Exposure vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/3409679
- Gegen Qinlian Decoction Coordinately Regulates PPARγ and PPARα to Improve Glucose and Lipid Homeostasis in Diabetic Rats and Insulin Resistance 3T3-L1 Adipocytes vol.11, pp.None, 2016, https://doi.org/10.3389/fphar.2020.00811
- Sirt6 Deacetylase: A Potential Key Regulator in the Prevention of Obesity, Diabetes and Neurodegenerative Disease vol.11, pp.None, 2016, https://doi.org/10.3389/fphar.2020.598326
- Antioxidant Alternatives in the Treatment of Amyotrophic Lateral Sclerosis: A Comprehensive Review vol.11, pp.None, 2020, https://doi.org/10.3389/fphys.2020.00063
- Harnessing the Neural Stem Cell Secretome for Regenerative Neuroimmunology vol.14, pp.None, 2020, https://doi.org/10.3389/fncel.2020.590960
- Anti-Aging Effects of Calorie Restriction (CR) and CR Mimetics Based on the Senoinflammation Concept vol.12, pp.2, 2020, https://doi.org/10.3390/nu12020422
- Altered mitochondrial metabolism in the insulin‐resistant heart vol.228, pp.3, 2016, https://doi.org/10.1111/apha.13430
- Prevention of Doxorubicin-Induced Autophagy Attenuates Oxidative Stress and Skeletal Muscle Dysfunction vol.9, pp.3, 2016, https://doi.org/10.3390/antiox9030263
- The Mitochondrial Protein VDAC1 at the Crossroads of Cancer Cell Metabolism: The Epigenetic Link vol.12, pp.4, 2016, https://doi.org/10.3390/cancers12041031
- Arsenic Sulfide Nanoformulation Induces Megakaryocytic Differentiation through Histone Deacetylase Inhibition vol.3, pp.5, 2020, https://doi.org/10.1002/adtp.201900151
- Interplay of adenosine monophosphate‐activated protein kinase/sirtuin‐1 activation and sodium influx inhibition mediates the renal benefits of sodium‐glucose co‐transporter vol.22, pp.5, 2016, https://doi.org/10.1111/dom.13961
- Protection Against Insulin Resistance by Apolipoprotein M/Sphingosine-1-Phosphate vol.69, pp.5, 2016, https://doi.org/10.2337/db19-0811
- Senoinflammation: A major mediator underlying age-related metabolic dysregulation vol.134, pp.None, 2020, https://doi.org/10.1016/j.exger.2020.110891
- Modulators of platelet function in aging vol.31, pp.4, 2016, https://doi.org/10.1080/09537104.2019.1665641
- Role of Deranged Energy Deprivation Signaling in the Pathogenesis of Cardiac and Renal Disease in States of Perceived Nutrient Overabundance vol.141, pp.25, 2016, https://doi.org/10.1161/circulationaha.119.045561
- The interplay between oxidative stress and bioenergetic failure in neuropsychiatric illnesses: can we explain it and can we treat it? vol.47, pp.7, 2016, https://doi.org/10.1007/s11033-020-05590-5
- Silent Mating–Type Information Regulation 2 Homolog 1 Attenuates the Neurotoxicity Associated with Alzheimer Disease via a Mechanism Which May Involve Regulation of Peroxisome Proliferator-Activ vol.190, pp.7, 2016, https://doi.org/10.1016/j.ajpath.2020.03.015
- CD38: T Cell Immuno-Metabolic Modulator vol.9, pp.7, 2016, https://doi.org/10.3390/cells9071716
- A New Vision of Mitochondrial Unfolded Protein Response to the Sirtuin Family vol.18, pp.7, 2020, https://doi.org/10.2174/1570159x18666200123165002
- Function of hesperidin alleviating inflammation and oxidative stress responses in COPD mice might be related to SIRT1/PGC-1α/NF-κB signaling axis vol.40, pp.4, 2016, https://doi.org/10.1080/10799893.2020.1738483
- Magnetic fields modulate metabolism and gut microbiome in correlation with Pgc‐1α expression: Follow‐up to an in vitro magnetic mitohormetic study vol.34, pp.8, 2016, https://doi.org/10.1096/fj.201903005rr
- The Effect of Resveratrol on Mitochondrial Function in Myoblasts of Patients with the Common m.3243A>G Mutation vol.10, pp.8, 2020, https://doi.org/10.3390/biom10081103
- Mutual Antagonism of Hypoxia-Inducible Factor Isoforms in Cardiac, Vascular, and Renal Disorders vol.5, pp.9, 2016, https://doi.org/10.1016/j.jacbts.2020.05.006
- Oxidative Stress, Neuroinflammation and Mitochondria in the Pathophysiology of Amyotrophic Lateral Sclerosis vol.9, pp.9, 2020, https://doi.org/10.3390/antiox9090901
- Insights into the Role of microRNAs in Colorectal Cancer (CRC) Metabolism vol.12, pp.9, 2020, https://doi.org/10.3390/cancers12092462
- Resveratrol and Resveratrol-Aspirin Hybrid Compounds as Potent Intestinal Anti-Inflammatory and Anti-Tumor Drugs vol.25, pp.17, 2020, https://doi.org/10.3390/molecules25173849
- Anti-Obesity Effects of Soybean Embryo Extract and Enzymatically-Modified Isoquercitrin vol.10, pp.10, 2016, https://doi.org/10.3390/biom10101394
- Molecular Mechanisms of SGLT2 Inhibitor on Cardiorenal Protection vol.21, pp.21, 2020, https://doi.org/10.3390/ijms21217833
- Energy Metabolism Decline in the Aging Brain—Pathogenesis of Neurodegenerative Disorders vol.10, pp.11, 2016, https://doi.org/10.3390/metabo10110450
- SIRT1 Activation Using CRISPR/dCas9 Promotes Regeneration of Human Corneal Endothelial Cells through Inhibiting Senescence vol.9, pp.11, 2016, https://doi.org/10.3390/antiox9111085
- Re‐equilibration of imbalanced NAD metabolism ameliorates the impact of telomere dysfunction vol.39, pp.21, 2020, https://doi.org/10.15252/embj.2019103420
- Effects of Rikkunshito treatment on renal fibrosis/inflammation and body weight reduction in a unilateral ureteral obstruction model in mice vol.10, pp.None, 2016, https://doi.org/10.1038/s41598-020-58214-0
- Hydrogen Attenuates Allergic Inflammation by Reversing Energy Metabolic Pathway Switch vol.10, pp.None, 2016, https://doi.org/10.1038/s41598-020-58999-0
- Anomalous AMPK-regulated angiotensin AT 1 R expression and SIRT1-mediated mitochondrial biogenesis at RVLM in hypertension programming of offspring to maternal high fructose exposure vol.27, pp.1, 2016, https://doi.org/10.1186/s12929-020-00660-z
- Autophagy-dependent and -independent modulation of oxidative and organellar stress in the diabetic heart by glucose-lowering drugs vol.19, pp.None, 2020, https://doi.org/10.1186/s12933-020-01041-4
- Endothelial SIRT1 as a Target for the Prevention of Arterial Aging: Promises and Challenges vol.78, pp.6, 2016, https://doi.org/10.1097/fjc.0000000000001154
- Susceptibility to COVID‐19 in populations with health disparities: Posited involvement of mitochondrial disorder, socioeconomic stress, and pollutants vol.35, pp.1, 2016, https://doi.org/10.1002/jbt.22626
- Inhibition of alcohol-induced inflammation and oxidative stress by astaxanthin is mediated by its opposite actions in the regulation of sirtuin 1 and histone deacetylase 4 in macrophages vol.1866, pp.1, 2016, https://doi.org/10.1016/j.bbalip.2020.158838
- Study of calcitriol anti-aging effects on human natural killer cells in vitro vol.12, pp.1, 2021, https://doi.org/10.1080/21655979.2021.1972076
- Blockage of protease-activated receptor 2 exacerbates inflammation in high-fat environment partly through autophagy inhibition vol.320, pp.1, 2016, https://doi.org/10.1152/ajpgi.00203.2020
- The Oxidative Stress and Chronic Inflammatory Process in Chagas Disease: Role of Exosomes and Contributing Genetic Factors vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/4993452
- SIRT1 is Required for Exercise-Induced Beneficial Effects on Myocardial Ischemia/Reperfusion Injury vol.14, pp.None, 2016, https://doi.org/10.2147/jir.s300997
- SIRT1 Activation Attenuates the Cardiac Dysfunction Induced by Endothelial Cell-Specific Deletion of CRIF1 vol.9, pp.1, 2016, https://doi.org/10.3390/biomedicines9010052
- Inhibition of miRNA-155 Alleviates High Glucose-Induced Podocyte Inflammation by Targeting SIRT1 in Diabetic Mice vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/5597394
- SIRT1 and SIRT2 Activity Control in Neurodegenerative Diseases vol.11, pp.None, 2016, https://doi.org/10.3389/fphar.2020.585821
- Hengshun Aromatic Vinegar Ameliorates Vascular Endothelial Injury via Regulating PKCζ-Mediated Oxidative Stress and Apoptosis vol.8, pp.None, 2016, https://doi.org/10.3389/fnut.2021.635232
- Mitochondrial Dysfunction and Oxidative Stress in Alzheimer’s Disease vol.13, pp.None, 2016, https://doi.org/10.3389/fnagi.2021.617588
- MicroRNAs as Potential Orchestrators of Alzheimer's Disease-Related Pathologies: Insights on Current Status and Future Possibilities vol.13, pp.None, 2016, https://doi.org/10.3389/fnagi.2021.743573
- Sodium-Glucose Cotransporter 2 Inhibitors Work as a “Regulator” of Autophagic Activity in Overnutrition Diseases vol.12, pp.None, 2016, https://doi.org/10.3389/fphar.2021.761842
- The Dawn of Mitophagy: What Do We Know by Now? vol.19, pp.2, 2016, https://doi.org/10.2174/1570159x18666200522202319
- Rutin and Gallic Acid Regulates Mitochondrial Functions via the SIRT1 Pathway in C2C12 Myotubes vol.10, pp.2, 2016, https://doi.org/10.3390/antiox10020286
- Effect of Leptin in Human Sertoli Cells Mitochondrial Physiology vol.28, pp.3, 2021, https://doi.org/10.1007/s43032-020-00328-x
- The involvement of autophagy in the maintenance of endothelial homeostasis: The role of mitochondria vol.57, pp.None, 2016, https://doi.org/10.1016/j.mito.2020.12.013
- Reduced metabolic capacity in fast and slow skeletal muscle via oxidative stress and the energy‐sensing of AMPK/SIRT1 in malnutrition vol.9, pp.5, 2016, https://doi.org/10.14814/phy2.14763
- Natural Extracts to Augment Energy Expenditure as a Complementary Approach to Tackle Obesity and Associated Metabolic Alterations vol.11, pp.3, 2021, https://doi.org/10.3390/biom11030412
- Links between mitochondrial retrograde response and mitophagy in pathogenic cell signalling vol.78, pp.8, 2021, https://doi.org/10.1007/s00018-021-03770-5
- 13C Metabolic Flux Analysis Indicates Endothelial Cells Attenuate Metabolic Perturbations by Modulating TCA Activity vol.11, pp.4, 2021, https://doi.org/10.3390/metabo11040226
- SRT1720 Pretreatment Promotes Mitochondrial Biogenesis of Aged Human Mesenchymal Stem Cells and Improves Their Engraftment in Postinfarct Nonhuman Primate Hearts vol.30, pp.7, 2016, https://doi.org/10.1089/scd.2020.0149
- Low magnitude vibration alleviates age-related bone loss by inhibiting cell senescence of osteogenic cells in naturally senescent rats vol.13, pp.8, 2016, https://doi.org/10.18632/aging.202907
- Nicotinamide ameliorates energy deficiency and improves retinal function in Cav‐1‐/‐ mice vol.157, pp.3, 2016, https://doi.org/10.1111/jnc.15266
- Pyrroloquinoline quinone promotes mitochondrial biogenesis in rotenone-induced Parkinson’s disease model via AMPK activation vol.42, pp.5, 2016, https://doi.org/10.1038/s41401-020-0487-2
- The pleiotropic neuroprotective effects of resveratrol in cognitive decline and Alzheimer’s disease pathology: From antioxidant to epigenetic therapy vol.67, pp.None, 2016, https://doi.org/10.1016/j.arr.2021.101271
- Contribution of PGC-1α to Obesity- and Caloric Restriction-Related Physiological Changes in White Adipose Tissue vol.22, pp.11, 2021, https://doi.org/10.3390/ijms22116025
- Nucleotide Excision Repair: From Molecular Defects to Neurological Abnormalities vol.22, pp.12, 2021, https://doi.org/10.3390/ijms22126220
- Recent Insights into the Interplay of Alpha-Synuclein and Sphingolipid Signaling in Parkinson’s Disease vol.22, pp.12, 2021, https://doi.org/10.3390/ijms22126277
- Linking NAD metabolism and DNA repair to inflammation in SSc vol.17, pp.7, 2016, https://doi.org/10.1038/s41584-021-00629-8
- The role of SIRT2 in vascular‐related and heart‐related diseases: A review vol.25, pp.14, 2016, https://doi.org/10.1111/jcmm.16618
- miR34a: a novel small molecule regulator with a big role in bronchopulmonary dysplasia vol.321, pp.1, 2016, https://doi.org/10.1152/ajplung.00279.2020
- Diabetes Mellitus and Cardiovascular Diseases: Nutraceutical Interventions Related to Caloric Restriction vol.22, pp.15, 2016, https://doi.org/10.3390/ijms22157772
- MiR-155-5p promotes renal interstitial fibrosis in obstructive nephropathy via inhibiting SIRT1 signaling pathway vol.41, pp.5, 2016, https://doi.org/10.1080/10799893.2020.1825491
- Chrysanthemum morifolium Flower Extract Ameliorates Obesity-Induced Inflammation and Increases the Muscle Mitochondria Content and AMPK/SIRT1 Activities in Obese Rats vol.13, pp.10, 2021, https://doi.org/10.3390/nu13103660
- The effect of curculigo orchioides (Xianmao) on kidney energy metabolism and the related mechanism in rats based on metabolomics vol.9, pp.11, 2016, https://doi.org/10.1002/fsn3.2573
- MicroRNA 132-3p Is Upregulated in Laron Syndrome Patients and Controls Longevity Gene Expression vol.22, pp.21, 2016, https://doi.org/10.3390/ijms222111861
- Alzheimer’s Disease and Type 2 Diabetes Mellitus: The Use of MCT Oil and a Ketogenic Diet vol.22, pp.22, 2016, https://doi.org/10.3390/ijms222212310
- miR-21 mimic blocks obesity in mice: A novel therapeutic option vol.26, pp.None, 2021, https://doi.org/10.1016/j.omtn.2021.06.019
- Ginsenoside Rg3 alleviates septic liver injury by regulating the lncRNA TUG1/miR-200c-3p/SIRT1 axis vol.18, pp.1, 2016, https://doi.org/10.1186/s12950-021-00296-2
- RETRACTED ARTICLE: MiR-34a inhibitor protects mesenchymal stem cells from hyperglycaemic injury through the activation of the SIRT1/FoxO3a autophagy pathway vol.12, pp.1, 2021, https://doi.org/10.1186/s13287-021-02183-2
- Dietary Phytoestrogens and Their Metabolites as Epigenetic Modulators with Impact on Human Health vol.10, pp.12, 2021, https://doi.org/10.3390/antiox10121893
- Potential Health Benefits of Whole Grains: Modulation of Mitochondrial Biogenesis and Energy Metabolism vol.69, pp.47, 2021, https://doi.org/10.1021/acs.jafc.1c05527
- Protective Effect of Sirt1 against Radiation-Induced Damage vol.196, pp.6, 2016, https://doi.org/10.1667/rade-20-00139.1
- Protective role of mitoquinone against impaired mitochondrial homeostasis in metabolic syndrome vol.61, pp.22, 2021, https://doi.org/10.1080/10408398.2020.1809344
- Hypoxia: Role of SIRT1 and the protective effect of resveratrol in ovarian function vol.21, pp.1, 2022, https://doi.org/10.1002/rmb2.12428
- Deregulated mitochondrial microRNAs in Alzheimer's disease: Focus on synapse and mitochondria vol.73, pp.None, 2016, https://doi.org/10.1016/j.arr.2021.101529
- Mitochondrial homeostasis and redox status in cardiovascular diseases: Protective role of the vagal system vol.178, pp.None, 2022, https://doi.org/10.1016/j.freeradbiomed.2021.12.255
- Inhibition of ATG3 ameliorates liver steatosis by increasing mitochondrial function vol.76, pp.1, 2016, https://doi.org/10.1016/j.jhep.2021.09.008
- Sirtuins and Sepsis: Cross Talk between Redox and Epigenetic Pathways vol.11, pp.1, 2022, https://doi.org/10.3390/antiox11010003
- Bicalutamide Exhibits Potential to Damage Kidney via Destroying Complex I and Affecting Mitochondrial Dynamics vol.11, pp.1, 2022, https://doi.org/10.3390/jcm11010135
- Exosomes in triple negative breast cancer: From bench to bedside vol.527, pp.None, 2022, https://doi.org/10.1016/j.canlet.2021.12.009