DOI QR코드

DOI QR Code

Analysis of Pyrethroid Resistance Allele in Malaria Vector Anopheles sinensis from Malaria High-risk Area

말라리아 위험지역에서 채집된 말라리아 매개모기 Anopheles sinensis의 피레스로이드계 저항성 대립형질 분석

  • Choi, Kwang Shik (School of Life Science, College of Natural Sciences, Kyungpook National University) ;
  • Lee, Seung-Yeol (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University) ;
  • Hwang, Do-Un (School of Life Science, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Heung-Chul (5th Medical Detachment, 168th Multifunctional Medical Battalion, 65th Medical Brigade) ;
  • Chang, Kyu-Sik (Division of Medical Entomology, Korea Center for Disease Control and Prevention) ;
  • Jung, Hee-Young (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)
  • 최광식 (경북대학교 자연과학대학 생명과학부) ;
  • 이승열 (경북대학교 농업생명과학대학 응용생명과학부) ;
  • 황도운 (경북대학교 자연과학대학 생명과학부) ;
  • 김흥철 (주한 미8군 65의무여단 168대대, 5의무대) ;
  • 장규식 (질병관리본부 질병매개곤충과) ;
  • 정희영 (경북대학교 농업생명과학대학 응용생명과학부)
  • Received : 2016.10.08
  • Accepted : 2016.11.29
  • Published : 2016.12.31

Abstract

Malaria is mainly transmitted by Anopheles sinensis which is dominant species in malaria high-risk area, northern part of Gyeonggi province in Korea. Pyrethroid insecticide is used for malaria vector, An. sinensis in Korea and the previous investigation consistently reported insecticide resistance from the vector. This study investigated insecticide susceptible and resistant alleles from An. sinensis and the status of malaria vector control in malaria high-risk area. For the study, An. sinensis collected from Paju, Gimpo and Ganghwa were sequenced for kdr detection. In Paju, there was no homozygous susceptibility and all of tested samples had homozygous or heterozygous resistance. There were 6.7% for susceptible homozygosity and 93.3% for resistant homozygosity or heterozygosity in Gimpo. Furthermore, the percentages of homozygous susceptibility and homozygous or heterozygous resistance in Ganghwa were 5.7% and 94.3% respectively. The results showed that the frequency of the insecticide resistance from An. sinensis in malaria high-risk area were increased much more than the previous investigation. Hence, this study suggests that malaria vector control programs should have to be prepared for the management of pyrethroid insecticide resistance.

우리나라 경기북부지역은 말라리아 위험지역으로 말라리아는 주로 이 지역의 우점종인 Anopheles sinensis에 의해 감염되는 것으로 알려져 있다. 이들에 대한 방제는 주로 피레스로이드계 살충제가 사용되고 있고 지금까지의 살충제 저항성 조사에서 지속적으로 저항성이 나타나고 있다. 이에 우리나라 말라리아 주요 매개모기인 An. sinensis의 피레스로이드계 살충제 저항성을 조사하여 말라리아 위험지역에서의 매개모기 방제에 대한 실태를 조사하고자 한다. 본 연구를 위하여 파주, 김포, 강화 세 지역에서 채집된 An. sinensis를 DNA 염기서열 분석을 통하여 저항성 유전형질을 분석하였다. 파주는 동형 감수성 유전형질은 발견되지 않았고 모든 개체에서 저항성 유전형질을 가지는 것으로 조사되었다. 김포에서는 6.7%의 동형 감수성 유전형질과 93.3%의 이형 또는 동형 저항성 유전형질을 나타내었고 강화의 경우는 5.7%의 동형 감수성 유전형질과 94.3%의 이형 또는 동형 저항성 유전형질이 조사되었다. 본 연구 결과를 통해서 우리나라 말라리아 위험지역인 파주, 김포, 강화에서의 말라리아 주요매개 모기인 An. sinensis의 피레스로이드계 살충제 저항성은 이전 조사에서보다 매우 증가한 것으로 나타났다. 따라서 이 지역의 말라리아 매개모기 방제를 위해서는 피레스로이드계 살충제 저항성 관리가 시급한 것으로 사료된다.

Keywords

References

  1. Chang, K. S., J. S. Jung, C. Park, D. K. Lee and E. Shin (2009) Insecticide susceptibility and resistance of larvae of the Anopheles sinensis group (Diptera: Culicidae) from Paju, Republic of Korea. Entomol. Res. 39:196-200. https://doi.org/10.1111/j.1748-5967.2009.00218.x
  2. Chang, K.-S., D.-H. Yoo, E.-H. Shin, W.-G. Lee, J. Y. Roh and M. Y. Park (2013) Susceptibility and resistance of field populations of Anopheles sinensis (Diptera: Culicidae) collected from Paju to 13 insecticides. Osong Public Health Res. Perspect. 4:76-80. https://doi.org/10.1016/j.phrp.2013.02.001
  3. Chang, K. S., D.-H. Yoo, Y. R. Ju, W. G. Lee, J. Y. Roh, H.-C. Kim, T. A. Klein and E.-H. Shin (2016) Distribution of malaria vectors and incidence of vivax malaria at Korean army installations near the demilitarized zone, Republic of Korea. Malar. J. 15:259. https://doi.org/10.1186/s12936-016-1301-y
  4. Diabate, A., C. Brengues, T. Baldet, K. R. Dabir, J. M. Hougard, M. Akogbeto, P. Kengne, F. Simard, P. Guillet, J. Hemingway and F. Chandre (2004) The spread of the Leu-Phe kdr mutation through Anopheles gambiae complex in Burkina Faso: genetic introgression and de novo phenomena. Trop. Med. Int. Health 9:1267-1273. https://doi.org/10.1111/j.1365-3156.2004.01336.x
  5. Gayathri, V. and P. B. Murthy (2006) Reduced susceptibility to deltamethrin and kdr mutation in Anopheles stephensi Liston, a malaria vector in India. J. Am. Mosq. Control Assoc. 22:678-688. https://doi.org/10.2987/8756-971X(2006)22[678:RSTDAK]2.0.CO;2
  6. Hall, T. A. (1999) Bioedit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41:95-98.
  7. Hemingway, J., N. J. Hawkes, L. McCarroll and H. Ranson (2004) The molecular basis of insecticide resistance in mosquitoes. Insect Biochem. Mol. Biol. 34:653-665. https://doi.org/10.1016/j.ibmb.2004.03.018
  8. Hoti, S. L., V. Vasuki, P. Jambulingam and S. S. Sahu (2006) kdr allele-based PCR assay for detection of resistance to DDT in Anopheles culicifacies sensu lato Giles population from Malkangiri District, Orissa, India. Curr. Sci. 91:658-661.
  9. Hunt, R. H., G. Fuseini, S. Knowles, J. Stiles-Ocran, R. Verster, M. L. Kaiser, K. S. Choi, L. L. Koekemoer and M. Coetzee (2011) Insecticide resistance in malaria vector mosquitoes at four localities in Ghana, West Africa. Parasite. Vector. 4:107. https://doi.org/10.1186/1756-3305-4-107
  10. Joshi, D., W. Choochote, M. H. Park, J. Y. Kim, T. S. Kim, W. Suwonkerd and G. S. Min (2009) The susceptibility of Anopheles lesteri to infection with Korean strain of Plasmodium vivax. Malar. J. 8:42. https://doi.org/10.1186/1475-2875-8-42
  11. Joshi, D., M. H. Park, A. Saeung, W. Choochote and G. S. Min (2010) Multiplex assay to identify Korean vectors of malaria. Mol. Ecol. Resour. 10:748-750. https://doi.org/10.1111/j.1755-0998.2010.02835.x
  12. Joshi, D., J. Y. Kim, W. Choochote, M. H. Park and G. S. Min (2011) Preliminary vivax malaria vector competence for three members of the Anopheles Hyrcanus group in the Republic of Korea. J. Am. Mosq. Control Assoc. 27:312-314. https://doi.org/10.2987/10-6086.1
  13. Kang, S., J. Jung, S. Lee, H. Hwang and W. Kim (2012) The polymorphism and the geographical distribution of the knockdown resistance (kdr) of Anopheles sinensis in the Republic of Korea. Malar. J. 11:151. https://doi.org/10.1186/1475-2875-11-151
  14. Kim, H., J. H. Baek, W. J. Lee and S. H. Lee (2007) Frequency detection of pyrethroid resistance allele in Anopheles sinensis populations by real-time PCR amplification of specific allele (rtPASA). Pestic. Biochem. Phys. 87:54-61. https://doi.org/10.1016/j.pestbp.2006.06.009
  15. Korea Centers for Disease Control and Prevention (KCDC) (2012) A Guideline of Malaria Management, Republic of Korea. Korea Center for Disease Control and Prevention 49-70.
  16. Korea Center for Disease Control and Prevention (KCDC) (2015) A Guideline of Malaria Management, Republic of Korea. Korea Center for Disease Control and Prevention 49-72.
  17. Lee, W. J., T. A. Klein, H. C. Kim, Y. M. Choi, S. H. Yoon, K. S. Chang, S. T. Chong, I. Y. Lee, J. W. Jones, J. S. Jacobs, J. Sattabongkot and J. S. Park (2007) Anopheles kleini, Anopheles pullus, and Anopheles sinensis: potential vectors of Plasmodium vivax in the Republic of Korea. J. Med. Entomol. 44: 1086-1090.
  18. Li, C., J. S. Lee, J. L. Groebner, H. C. Kim, T. A. Klein, M. L. O'guinn and R. C. Wilkerson (2005) A newly recognized species in the Anopheles Hyrcanus Group and molecular identification of related species from the Republic of South Korea (Diptera: Culicidae). Zootaxa 939:1-8. https://doi.org/10.11646/zootaxa.939.1.1
  19. Mnzava, A. P., T. B. Knox, E. A. Temu, A. Trett, C. Fornadel, J. Hemingway and M. Renshaw (2015) Implementation of the global plan for insecticide resistance management in malaria vectors: progress, challenges and the way forward. Malar. J. 14:173. https://doi.org/10.1186/s12936-015-0693-4
  20. Park, J. W., T. A. Klein, H. C. Lee, L. A. Pacha, S. H. Ryu, J. S. Yeom, S. H. Moon, T. S. Kim, J. Y. Chai, M. D. Oh and K. W. Choe (2003) Vivax malaria: a continuing health threat to the Republic of Korea. Am. J. Trop. Med. Hyg. 69:159-167.
  21. Ree, H. I. (2005) Studies on Anopheles sinensis, the vector species of vivax malaria in Korea. Korean J. Parasitol. 43:75-92. https://doi.org/10.3347/kjp.2005.43.3.75
  22. Rueda, L. M., C. Li, H. C. Kim, T. A. Klein, D. H. Foley and R. C. Wilkerson (2010) Anopheles belenrae, a potential vector of Plasmodium vivax in the Republic of Korea. J. Am. Mosq. Control Assoc. 26:430-432. https://doi.org/10.2987/10-6057.1
  23. Wang, D., Z. Xia, S. Zhou, X. Zhou, R. Wang and Q. Zhang (2013) A potential threat to malaria elimination: extensive deltamethrin and DDT resistance to Anopheles sinensis from the malaria-endemic areas in China. Malar. J. 12:164. https://doi.org/10.1186/1475-2875-12-164
  24. World Health Organization (1981) Synopsis of the world malaria situation in 1979. The Weekly Epidemiological Record 56:145-149.
  25. World Health Organization (1998) Test procedures for insecticide resistance monitoring in malaria vectors, bio-efficacy and persistence of insecticides on treated surfaces. WHO/CDS/CPC/MAL/98.12 Geneva, Switzerland.
  26. World Health Organization (2012) Global Plan for Insecticide Resistance Management in Malaria Vectors. Geneva, Switzerland: World Health Organization.
  27. World Health Organization (2014) Global Malaria Programme, World malaria report. Geneva: World Health Organization.
  28. World Health Organization (2015) Global Malaria Programme, World malaria report. Geneva: World Health Organization.

Cited by

  1. Preliminary report of knockdown resistance in CULEX PIPIENS PALLENS and Aedes koreicus from Korea vol.49, pp.9, 2019, https://doi.org/10.1111/1748-5967.12391