DOI QR코드

DOI QR Code

시간 압박이 시각 탐색 전략에 미치는 영향 모델링

Modeling Time Pressure Effect on Visual Search Strategy

  • 최윤형 (고려대학교 산업경영공학과) ;
  • 명노해 (고려대학교 산업경영공학과)
  • Choi, Yoonhyung (Department of Industrial Management Engineering, Korea University) ;
  • Myung, Rohae (Department of Industrial Management Engineering, Korea University)
  • 투고 : 2016.06.20
  • 심사 : 2016.12.06
  • 발행 : 2016.12.15

초록

The previous Adaptive Control of Thought-Rational (ACT-R) cognitive architecture model has a limitation in that it cannot accurately predict human visual search strategy, because time effect, one of important human cognitive features, is not considered. Thus, the present study proposes ACT-R cognitive modeling that contains the impact of time using a revised utility system in the ACT-R model. Then, the validation of the model is performed by comparing results of the model with eye-tracking experimental data and SEEV-T (SEEV-Time; SEEV model which considers time effect) model in "Where's Wally" game. The results demonstrate that the model data fit fairly well with the eye-tracking data ($R^2=0.91$) and SEEV-T model ($R^2=0.93$). Therefore, the modeling method which considers time effect using a revised utility system should be used in predicting the human visual search paradigm when the available time is limited.

키워드

참고문헌

  1. Anderson, J. R. (1993), Problem solving and learning, American Psychologist, 48(1), 35. https://doi.org/10.1037/0003-066X.48.1.35
  2. Anderson, J. R. (2007), How can the human mind occur in the physical universe?, Oxford University Press.
  3. Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., and Qin, Y. (2004), An integrated theory of mind, Psychological Review, 111(4), 1036-1060. https://doi.org/10.1037/0033-295X.111.4.1036
  4. Bundesen, C. (1990), A theory of visual attention, Psychological review, 97(4), 523. https://doi.org/10.1037/0033-295X.97.4.523
  5. Byrne, M. D. (2001), ACT-R/PM and menu selection : Applying a cognitive architecture to HCI, International Journal of Human-Computer Studies, 55(1), 41-84. https://doi.org/10.1006/ijhc.2001.0469
  6. Choi, Y., Oh, H., and Myung, R. (2015), Modeling of Visual Search based on Saliency and Scene-context in Real-world Images, Journal of the Korean Institute of Industrial Engineers, 41(4), 389-395. https://doi.org/10.7232/JKIIE.2015.41.4.389
  7. Credidio, H. F., Teixeira, E. N., Reis, S. D., Moreira, A. A., and Andrade Jr, J. S. (2012), Statistical patterns of visual search for hidden objects, Scientific reports, 2.
  8. Green, C. S. and Bavelier, D. (2006), The cognitive neuroscience of video games, Digital media : Transformations in human communication, 211-223.
  9. Halverson, T. and Hornof, A. J. (2011), A computational model of "active vision" for visual search in human-computer interaction, Human- Computer Interaction, 26(4), 285-314. https://doi.org/10.1080/07370024.2011.625237
  10. Hwang, A. D., Higgins, E. C., and Pomplun, M. (2009), A model of topdown attentional control during visual search in complex scenes, Journal of Vision, 9(5), 25-25.
  11. Johnson, E. J. (1990). The adaptive decision maker : Effort and accuracy in choice, Insights in decision making : A tribute to Hillel J. Einhorn, 129.
  12. Jung, K. (2015), Legible and preferred korean sizes for various colors and fonts, Journal of the Korean Institute of Industrial Engineers, 41(1), 59-63. https://doi.org/10.7232/JKIIE.2015.41.1.059
  13. Koch, C. and Ullman, S. (1985), Shifts in selective visual attention : towards the underlying neural circuitry, Human Neurobiolgy, 4(4), 115-141.
  14. Kujala, T. and Saariluoma, P. (2011), Effects of menu structure and touch screen scrolling style on the variability of glance durations during in-vehicle visual search tasks, Ergonomics, 54(8), 716-732. https://doi.org/10.1080/00140139.2011.592601
  15. Ling, J. and Van Schaik, P. (2004), The effects of link format and screen location on visual search of web pages, Ergonomics, 47(8), 907-921. https://doi.org/10.1080/00140130410001670417
  16. Maule, A. J. and Edland, A. C. (1997), The effects of time pressure on human judgment and decision making, Decision making : Cognitive models and explanations, 189-204.
  17. Maule, A. J., Hockey, G. R. J., and Bdzola, L. (2000), Effects of time-pressure on decision-making under uncertainty : changes in affective state and information processing strategy, Acta psychologica, 104(3), 283-301. https://doi.org/10.1016/S0001-6918(00)00033-0
  18. Niebur, E. (2007), Saliency map, Scholarpedia, 2(8), 2675. https://doi.org/10.4249/scholarpedia.2675
  19. Nyamsuren, E. and Taatgen, N. A. (2013), Pre-attentive and attentive vision module, Cognitive Systems Research, 24, 62-71. https://doi.org/10.1016/j.cogsys.2012.12.010
  20. Pomplun, M. (2006), Saccadic selectivity in complex visual search displays, Vision research, 46(12), 1886-1900. https://doi.org/10.1016/j.visres.2005.12.003
  21. Roskes, M., Elliot, A. J., Nijstad, B. A., and De Dreu, C. K. (2013), Time pressure undermines performance more under avoidance than approach motivation, Personality and Social Psychology Bulletin, 39(6), 803-813. https://doi.org/10.1177/0146167213482984
  22. Salvucci, D. D. (2001), An integrated model of eye movements and visual encoding, Cognitive Systems Research, 1(4), 201-220. https://doi.org/10.1016/S1389-0417(00)00015-2
  23. Salvucci, D. D. and Taatgen, N. A. (2008), Threaded cognition : an integrated theory of concurrent multitasking, Psychological review, 115(1), 101. https://doi.org/10.1037/0033-295X.115.1.101
  24. Svenson, O. and Maule, A. J. (Eds.). (1993), Time pressure and stress in human judgment and decision making (pp. 133-144), New York, NY : Plenum Press.
  25. Tuch, A. N., Bargas-Avila, J. A., Opwis, K., and Wilhelm, F. H. (2009), Visual complexity of websites : Effects on users' experience, physiology, performance, and memory, International Journal of Human-Computer Studies, 67(9), 703-715. https://doi.org/10.1016/j.ijhcs.2009.04.002
  26. Vangkilde, S. and Habekost, T. (2010), Finding Wally : prism adaptation improves visual search in chronic neglect, Neuropsychologia, 48(7), 1994-2004. https://doi.org/10.1016/j.neuropsychologia.2010.03.020
  27. Walther, D. (2006), Interactions of visual attention and object recognition : computational modeling, algorithms, and psychophysics, Phd thesis, California Institute of Technology.
  28. Wickens, C. D., Vincow, M. A., Schopper, A. W., and Lincoln, J. E. (1997), Computational models of human performance in the design and layout of controls, CSERIAC State of the Art(SOAR) Report. Wright-Patterson AFB : Crew Systems Ergonomics Information Analysis Center.
  29. Wickens, C. D., Goh, J., Helleberg, J., Horrey, W. J., and Talleur, D. A. (2003), Attentional models of multitask pilot performance using advanced display technology, Human Factors : The Journal of the Human Factors and Ergonomics Society, 45(3), 360-380. https://doi.org/10.1518/hfes.45.3.360.27250
  30. Wolfe, J. M., Butcher, S. J., Lee, C., and Hyle, M. (2003), Changing your mind : on the contributions of top-down and bottom-up guidance in visual search for feature singletons, Journal of Experimental Psychology : Human Perception and Performance, 29(2), 483. https://doi.org/10.1037/0096-1523.29.2.483