DOI QR코드

DOI QR Code

전기자동차용 부탄 연료 복합열원 히팅시스템의 열적 성능에 관한 수치적 연구

Numerical Study on Thermal Performances of Multi Heat Source Heating System Using Butane for Electric Vehicle

  • 투고 : 2016.09.12
  • 심사 : 2016.10.07
  • 발행 : 2016.10.31

초록

본 연구의 목적은 복합열원을 이용하는 전기자동차용 부탄 연소식 히팅 시스템의 열적 성능을 수치적으로 연구하는 것이다. 복합열원 히팅 시스템은 승차공간 난방을 목적으로 하는 공기 가열부와 배터리 열관리를 위한 냉각수 가열부로 구성되어 있으며, 각 열원별 열적 성능을 분석하기 위하여 상용 수치해석 프로그램인 ANSYS CFX를 이용하여 공기 및 냉각수 유량변화에 따른 각 열원별 토출 온도를 도출하고 난방 용량을 계산하였다. 수치해석을 통하여 도출된 각 열원별 토출 온도는 이론적으로 계산한 토출 온도와 비교하였고, 약 0.15% 이하의 오차를 나타내었다. 결론적으로 외부공기의 유량을 0.005, 0.01, 0.015 kg/s로 증가시킬 경우 승차공간으로 유입되는 공기 온도는 감소하였으며, 배터리 열관리용으로 배출되는 냉각수 온도는 증가하였다. 또한 냉각수 유량을 0.005, 0.01, 0.015 kg/s로 증가시킬 경우 토출되는 난방 공기와 냉각수 온도는 감소하였다. 더불어 배터리 열관리를 위한 최적의 냉각수 온도와 승차공간을 위한 높은 난방 용량을 만족하기 위한 공기 및 냉각수 유량 조건은 각 0.01 kg/s 와 0.015 kg/s로 나타났다.

This study numerically investigates the thermal performance of a 2.0-kW butane-based combustion heating system for an electric vehicle under cold conditions. The system is used for cabin space heating and coolant-based battery thermal management. ANSYS CFX 17 software was used for parametric analysis. The mass flow rates of cold air and coolant were varied, and their effects were compared. The numerical results were validated with theoretical studies, which showed an error of 0.15%. As the outside air mass flow rates were increased to 0.005, 0.01, and 0.015 kg/s, the cabin supply air temperature decreased continuously while the coolant outlet temperature increased. When the coolant mass flow rates were increased to 0.005, 0.01 and 0.015 kg/s, the air temperature increased while the coolant outlet temperatures decreased. The optimal mass flow rates are discussed in a consideration of the requirements for high cabin heating capacity and efficient battery thermal management.

키워드

참고문헌

  1. S. M. Park, S. D. Kim, C. S. Jung, C. W. Lee, J. W. Kim, S. W. Jung, "Development of intelligent-controlled high voltage PTC for Eco-Friendly EV", Proc. of KSME Spring Conference on Energy or Power Engineering, pp. 144-147, 2011.
  2. S. H. Kim, W. K. Na, "A study on Applying Auxiliary Heater to Diesel Vehicle for Heating Performance Improvement", Proc. of KASE Spring Conference, pp. 488-492, 2004.
  3. H.-J. Kim, E.-Y. Kang, S.-B. Im, G.-C. Hoang, Y.-K. Kim, "A Comparative Analysis of Thermal Properties of COB LED based on Thermoelectric Device Structure," The Journal of The Institute of Internet, Broadcasting and Communication (IIBC), vol. 15, no. 2, pp. 189-194, Apr. 2015. DOI: http://dx.doi.org/10.7236/JIIBC.2015.15.2.189
  4. G.M. Jeon, H.W. Lee, Y.S. Ki, "The Study to Suggest a Methods to Evaluate Heating and Cooling Energy Performance based on Daily Life," Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, vol. 5, no. 3, pp. 291-299, June 2015. DOI: http://dx.doi.org/10.14257/AJMAHS.2015.06.16
  5. D. Y. Choi, W. S. Lee, C. M. Kim, Y. C. Choi, H. R. Shim, "Development of Heating System on Battery Electric Vehicle for Range Enhancement by Using Bio-Ethanol Fire-Operating Heater", Proc. of KASE Annual Conference, pp. 689-688, 2013.
  6. Y. M. Bang, J. H. Seo, M. Y. Lee, "Experimental Study on the Heating Performances of the Air Heater with Diesel for Passenger Cabin Heating of an Electric Vehicle", Journal of the Korea Academia-Industrial cooperation Society, vol. 16, no. 11, pp. 7250-7255, 2015. DOI: http://dx.doi.org/10.5762/KAIS.2015.16.11.7250
  7. S. S Lee, J. S. Lee, D. Y. Lee, K. H. Suk, "Combustion characteristics of the heater for the vehicle", Proc. of The Fourth National Congress on Fluids Engineering, pp. 253-256, 2006
  8. C. H. Hwang, S. W. Baek, "Numerical Investigation on the Thermal and Flow Characteristics of Combustion Heater for Commercial Vehicle", The Korean Society of Combustion, vol. 16, no. 2, pp. 40-46, 2011
  9. L. H. Saw, Y. H. Ye, A. A.O. Tay, W. T. Chong. S. H. Kuan, M. C. Yew, "Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling", Applied Energy, vol. 177, pp. 783-792. 2016. DOI: http://dx.doi.org/10.1016/j.apenergy.2016.05.122
  10. Stephen R. Turns, AN INTRODUCTION TO COMBUSTION: CONCEPTS AND APPLICATIONS. p. 649, McGraw-Hill, 2000.