DOI QR코드

DOI QR Code

푸셔 증후군이 있는 뇌졸중 환자에서 시각적 피드백기반 로봇보조 재활치료의 효과

Effect of Robot Assisted Rehabilitation Based on Visual Feedback in Post Stroke Pusher Syndrome

  • 김민수 (원광대학병원 재활의학과)
  • Kim, Min-Su (Department of Rehabilitation Medicine, Wonkwang University School of Medicine)
  • 투고 : 2016.09.21
  • 심사 : 2016.10.07
  • 발행 : 2016.10.31

초록

본 연구의 목적은 가상현실과 로봇보조재활치료를 이용하여 뇌졸중 후 푸셔 증후군에 대한 치료적인 효과를 조사하고자 하기 위함이다. 총 10명의 뇌졸중 후 푸셔 증후군을 보이는 환자가 모집되었다. 환자는 각각 5 명씩 로봇보조재활치료와 대조군으로 배정되었다. 실험군은 로봇보조재활치료와 일반적인 재활치료를 함께 받았으며, 대조군은 하루 2회 일반적인 재활치료를 받았다. 중재 시간은 30분간 진행되었으며, 주 5회, 4주간 시행하였다. 치료 전후 변화는 Scale for contraversive pushing (SCP), Berg balance scale (BBS), falling index (FI), Timed up and go test (TUG)을 이용하여 측정하였다. 4 주간의 중재 치료 후 로봇보조재활치료 군에서 SCP (p=0.046), BBS (p=0.046), FI (p=0.038), TUG (p=0.038)은 대조군에 비하여 유의하게 향상되었다. 또한 SCP와 BBS (p=0.024), FI (p=0.039), TUG (p=0.030)는 유의한 상관관계가 관찰되었다. 결과적으로 가상현실을 이용한 로봇보조재활치료는 일반적인 재활치료에 비하여 뇌졸중 후 푸셔 증후군을 회복하는데 더 도움이 되었으며, 푸셔 증후군의 회복은 균형과 보행기능의 향상과 관련이 있었다.

This study to investigated the therapeutic effect of robot-assisted rehabilitation (Lokomat) with virtual reality (VR) on Pusher syndrome (PS) after stroke. A total of 10 patients presented with PS after stroke were recruited. The participants were divided into two groups: Lokomat (n=5) and control groups (n=5). Lokomat and conventional physical therapy (CPT) were performed together in the experimental group, and the patients in the control group were treated with CPT only twice a day. One session of intervention was carried out for 30 minutes five times per week for 4 weeks. Scale for contraversive pushing (SCP), Berg balance scale (BBS), falling index (FI), and Timed up and go test (TUG) were measured before and after the intervention. The Lokomat group produced significantly better outcomes in SCP (p=0.046), BBS (p=0.046), FI (p=0.038), and TUG (p=0.038) compared with the control group after 4 weeks of intervention. In addition, there were significant correlations between SCP and BBS (p=0.024), FI (p=0.039), and TUG (p=0.030). In conclusion, Lokomat with VR more effectively aided recovery from PS after stroke, and restoration of PS symptoms was related with improvement of balance and gait function.

키워드

참고문헌

  1. H. O. Karnath, D. Broetz, "Understanding and Treating Pusher Syndrome", Phys Ther, vol. 83, no. 12, pp. 1119-25, 2003.
  2. C. J. Danells, S. E. Black, D. J. Gladstone, "Poststroke Pushing: Natural History and Relationship to Motor and Functional Recovery", Stroke, vol. 35, no. 12, pp. 2873-8, 2004. DOI: http://dx.doi.org/10.1161/01.STR.0000147724.83468.18
  3. P. M. Pedersen, A. Wandel, H. S. Jorgensen, "Ipsilateral Pushing in Stroke: Incidence, Relation to Neuropsychological Symptoms, and Impact on Rehabilitation. The Copenhagen Stroke Study", Arch Phys Med Rehabil, vol. 7 7, no. 1, pp. 25-8, 1996. https://doi.org/10.1016/S0003-9993(96)90215-4
  4. J. H. Lee, S. B. Kim, G. C. Lee, "Characteristics and Prognosis of Pusher Syndrome in Stroke Patients,", Ann Rehabil Med, vol. 34, no. 4, pp. 409-16, 2010.
  5. M. Paci, M. Baccini, L. A. Rinaldi, "Pusher Behaviour: A Critical Review of Controversial Issues", Disabil Rehabil, vol. 31, no. 4, pp. 249-58, 2009. DOI: http://dx.doi.org/10.1080/09638280801928002
  6. W. H. Chang, Y. H. Kim, "Robot-assisted Therapy in Stroke Rehabilitation", J Stroke, vol. 15, no. 3, pp. 174-81, 2013. DOI: http://dx.doi.org/10.5853/jos.2013.15.3.174
  7. L. Li, L. Ding, N. Chen, "Improved Walking Ability with Wearable Robot-Assisted Training in Patients Suffering Chronic Stroke", Biomed Mater Eng, vol. 26 Suppl 1, pp. S329-40, 2015. DOI: http://dx.doi.org/10.3233/BME-151320
  8. C. Chisari, F. Bertolucci, V. Monaco, "Robot-assisted Gait Training Improves Motor Performances and Modifies Motor Unit Firing in Poststroke Patients", Eur J Phys Rehabil Med, vol. 51, no. 1, pp. 59-69, 2015.
  9. K. H. Jeong, D. H. Seong, Y. H. Kim, "Effects of Robot-assisted Gait Therapy on Locomotor Recovery in Stroke Patients", Ann Rehabil Med, vol. 32, no. 3, pp. 258-66, 2008.
  10. H. O. Karnath, D. Brotz, "Instructions for the Clinical Scale for Contraversive Pushing (SCP)", Neurorehabil Neural Repair, vol. 21, no. 4, pp. 370-1; author reply 371, 2007. DOI: http://dx.doi.org/10.1177/1545968307300702
  11. M. Baccini, M. Paci, L. A. Rinaldi, "The Scale for Contraversive Pushing: A Reliability and Validity Study", Neurorehabil Neural Repair, vol. 20, no. 4, pp. 468-72, 2006. DOI: http://dx.doi.org/10.1177/1545968306291849
  12. L. Blum, N. Korner-Bitensky, "Usefulness of the Berg Balance Scale in Stroke Rehabilitation: A Systematic Review", Phys Ther, vol. 88, no. 5, pp. 559-66, 2008. DOI: http://dx.doi.org/10.2522/ptj.20070205
  13. C. L. Kim, J. A. Lee, M. H. Jeon, "Assessments of Balance Control Using Tetra-ataxiametric Posturography", Ann Rehabil Med, vol. 33, no. 4, pp. 429-35, 2009.
  14. H. O. Karnath, S. Ferber, J. Dichgans, "The Neural Representation of Postural Control in Humans", Proc Natl Acad Sci USA, vol. 97, no. 25, pp. 13931-6, 2000. DOI: http://dx.doi.org/10.1073/pnas.240279997
  15. B. Baier, J. Janzen, W. Muller-Forell, "Pusher Syndrome: Its Cortical Correlate," J Neurol, vol. 259, no. 2, pp. 277-83, 2012. DOI: http://dx.doi.org/10.1007/s00415-011-6173-z
  16. D. Broetz, H. O. Karnath, "New Aspects for the Physiotherapy of Pushing Behaviour", NeuroRehabilitation, vol. 20, no. 2, pp. 133-8, 2005. DOI: http://dx.doi.org/10.1177/0269215514564898
  17. Y. R. Yang, Y. H. Chen, H. C. Chang, "Effects of Interactive Visual Feedback Training on Post-Stroke Pusher Syndrome: A Pilot Randomized Controlled Study", Clin Rehabil, vol. 29, no. 10, pp. 987-93, 2015. DOI: http://dx.doi.org/10.1177/0269215514564898
  18. D. A. Perennou, B. Amblard, M. Laassel, "Understanding the Pusher Behavior of Some Stroke Patients with Spatial Deficits: A Pilot Study", Arch Phys Med Rehabil, vol. 83, no. 4, pp. 570-5, 2002. DOI: http://dx.doi.org/10.1053/apmr.2002.31198
  19. C. Pin-Barre, J. Laurin, "Physical Exercise as a Diagnostic, Rehabilitation, and Preventive Tool: Influence on Neuroplasticity and Motor Recovery after Stroke", Neural Plast, vol. 2015. DOI: http://dx.doi.org/10.1155/2015/608581
  20. N. Wada, M. Sohmiya, T. Shimizu, "Clinical Analysis of Risk Factors for Falls in Home-Living Stroke Patients Using Functional Evaluation Tools", Arch Phys Med Rehabil, vol. 88, no. 12, pp. 1601-5, 2007. DOI: http://dx.doi.org/10.1016/j.apmr.2007.09.005