DOI QR코드

DOI QR Code

시스템 탄력성을 고려한 빗물저류조 운영수위 결정

Determination of operating offline detention reservoir considering system resilience

  • 이의훈 (고려대학교 건축사회환경공학과) ;
  • 이용식 (고려대학교 건축사회환경공학과) ;
  • 정동휘 (고려대학교 방재과학기술연구소) ;
  • 주진걸 (동신대학교 토목공학과) ;
  • 김중훈 (고려대학교 건축사회환경공학부)
  • Lee, Eui Hoon (Department of Civil, Environmental, and Architectural Engineering, Korea University) ;
  • Lee, Yong Sik (Department of Civil, Environmental, and Architectural Engineering, Korea University) ;
  • Jung, Donghwi (Research Center for Disaster Prevention Science and Technology, Korea University) ;
  • Joo, Jin Gul (Deparment of Civil Engineering, Dongshin University) ;
  • Kim, Joong Hoon (School of Civil, Environmental, and Architectural Engineering, Korea University)
  • 투고 : 2016.07.18
  • 심사 : 2016.10.07
  • 발행 : 2016.10.31

초록

최근 도시 지역에서 엄청난 집중 호우의 빈도가 높아지고 불투수면적의 비율이 증가하면서 침수 발생 횟수 및 침수로 인한 피해가 급증하고 있다. 대부분의 지방자치단체에서는 도시의 침수를 방어하기 위해 빗물펌프장 설치, 우수관거 개량, 빗물저류조 설치 등의 구조적인 대책을 마련하고 있으나 치수시설의 포화로 치수대책의 효과가 줄어들고 있다. 이를 보완하기 위해 다양한 홍수 예보 및 내배수시설 운영 등과 같은 비구조적인 대책이 마련되고 있다. 본 연구에서는 구조적인 대책의 한계점을 보완하기 위해 현행 빗물저류조 운영방법이 아닌 새롭게 제시된 빗물저류조 운영방법의 펌프정지수위를 결정하였다. 새롭게 제시된 빗물저류조 운영에서 펌프정지수위 결정을 위해 Huff 분포에 의해 생성한 총 48개의 강우를 생성하였다. 먼저 생성된 강우를 빈도, 분위 및 지속시간 별로 구분하였다. 생성된 강우를 적용하여 실시한 강우-유출 모의를 토대로 평균 탄력성을 산정하고 1.2 m에서 1.5 m의 범위를 결정하였다. 결정된 범위에서 하수도 시설 기준에 의한 안전율 1.25를 고려하여 최종적으로 1.2 m를 적정 펌프정지수위로 결정하였다.

Recently, the number of occurrences of inundation and the severity of flood damage has increased rapidly as the frequency of localized heavy rainfall and the ratio of impervious area increased in urban areas. Most local governments focus on employing structural measures (e.g., the construction of detention reservoirs/pump stations, rehabilitation of drainage and sewer pipes) to prevent urban inundation. On the other hand, the effectiveness of implementing such structural measures is being dimished because there are already many inundation prevention facilities. The limitation of structural measures can be overcoming by employing non-structure measures, such as flood alerts and the operation of drainage facilities. This study suggests the pump operation rule (i.e., suggesting pump stop level) for a new detention reservoir operating method, which triggers the operation of a pump based on the water level at the monitoring node in urban drainage system. In the new reservoir operation, a total of 48 rainfall events are generated by the Huff distribution for determining the proper pump stop level. First, the generated rainfall events are distributed as frequencies, quartiles, and durations. The averaged system resilience value was determined to range from 1.2 m to 1.5 m is based on the rainfall-runoff simulation with rainfall generated by the Huff distribution. In this range, 1.2 m was identified considering the safety factor of 1.25 by the Standard on sewer facilities in 2011.

키워드

참고문헌

  1. J.H. Lee, Y.J. Lee, H.D. Jun, and J.H. Kim, "Development of a Pump Operation Rule in a Drainage Pump Station using a Real Time Control Model for Urban Drainage System", Journal of Korea Water Resources Association, vol. 40, no. 11, pp. 877-886, 2007. DOI: http://dx.doi.org/10.3741/JKWRA.2007.40.11.877
  2. N. Tamoto, J. Endo, K. Yoshimoto, T. Yoshida, and T. Sakakibara, "Forecast-based operation method in minimizing flood damage in urban area", 11th International Conference on Urban Drainage, Edinburgh, Scotland, UK, 2008. DOI: http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000268
  3. S. Graber, "Generalized Method for Storm-Water Pumping Station Design", Journal of Hydrologic Engineering, vol. 15, Issue 11, pp. 901-908, 2010. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000268
  4. J.G. Joo, D.G. Yoo, J.M. Yang, D.H. Jung, and J.H. Kim, "Improvement and Application of Pump Station Operating System and Economic Analysis of the Application", Journal of Korean Society of Hazard Mitigation, vol. 10, no. 3, pp. 155-165, 2010.
  5. N. Hsu, C. Huang, and C. Wei, "Intelligent real-time operation of a pumping station for an urban drainage system", Journal of Hydrology, vol. 489, pp. 85-97, 2013. DOI: http://dx.doi.org/10.1016/j.jhydrol.2013.02.047
  6. J.H. Chung, K.Y. Han, and K.S. Kim, "Optimization of detention facilities by using multi-objective genetic algorithms", Journal of Korea Water Resources Association, vol. 41, no. 12, pp. 1211-1218, 2008. DOI: http://dx.doi.org/10.3741/JKWRA.2008.41.12.1211
  7. A.A.N. AL-Hamati, A.H. Ghazali, and T.A. Mohammed, "Determination of storage volume required in a sub-surface stormwater detention/retention system", Journal of Hydro-environment Research, vol. 4, Issue 1, pp. 47-53, 2010. https://doi.org/10.1016/j.jher.2009.12.002
  8. I. Andres-Domenech, A. Montanari, and J.B. Marco, "Stochastic rainfall analysis for storm tank performance evaluation", Hydrology and Earth System Sciences, vol. 14, Issue 7, pp. 1221-1232, 2010. DOI: http://dx.doi.org/10.5194/hess-14-1221-2010
  9. I. Andres-Domenech, A. Montanari, and J.B. Marco, "Efficiency of storm detention tanks for urban drainage systems under climate variability", Journal of Water Resources Planning and Management, vol. 138, no. 1, pp. 36-46, 2012. DOI: http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000144
  10. J. Chill, and L.W. Mays, "Determination of the optimal location for developments to minimize detention requirements", Water Resources Management, vol. 27, Issue 15, pp. 5089-5100, 2013.
  11. T. Tao, J. Wang, K. Xin, and S. Li, "Multi-objective optimal layout of distributed storm-water detention", International Journal of Environmental Science and Technology, vol. 11, no. 5, pp. 1473-1480, 2014. DOI: http://dx.doi.org/10.1007/s13762-013-0330-0
  12. E.H. Lee, Y.S. Lee, J.G. Joo, and J.H. Kim, "Development of Operation in Urban Offline Detention Reservoirs", Journal of Korean Society of Hazard Mitigation, vol. 16, no. 1, pp. 227-236, 2016. DOI: http://dx.doi.org/10.9798/KOSHAM.2016.16.1.227
  13. E.H. Lee, D.G. Yoo, and J.H. Kim, "Estimation of Interevent Time for Management of Non-Point Source Pollutants", Journal of the Academia-Industrial cooperation Society, vol. 15, no. 5, pp. 3159-3168, 2014. DOI: http://dx.doi.org/10.5762/KAIS.2014.15.5.3159
  14. F.A. Huff, "Time distribution of rainfall in heavy storms", Water Resources Research, vol. 3, Issue 4, pp. 1007-1019, 1967. DOI: http://dx.doi.org/10.1029/WR003i004p01007
  15. Yeongdeungpo-Gu. "Report on design of Daerim reservoir", 2007.
  16. Korea Water and Wastewater Works Association. "Standard on sewer facility", 2011.

피인용 문헌

  1. Optimal Sewer Network Design Considering Resilience: Resulting Design Comparison for Different Level of Failure Depth vol.18, pp.3, 2018, https://doi.org/10.9798/KOSHAM.2018.18.3.95