DOI QR코드

DOI QR Code

The research of Correspondence Analysis centered on the Failure Period to improve the reliability of Weapon Systems

무기체계의 신뢰성 향상을 위한 고장발생기간 중심의 대응분석 연구

  • Song, Bong-Geun (Department of Industrial Management Engineering, Korea University) ;
  • Kim, Geun-Hyung (ILS(Integrated Logistics Support) R&D Lab, LIG Nex1) ;
  • Kim, Young-Kuk (ILS(Integrated Logistics Support) R&D Lab, LIG Nex1) ;
  • Park, Seung Hwan (Department of Industrial Management Engineering, Korea University) ;
  • Baek, Jun-Geol (Department of Industrial Management Engineering, Korea University)
  • 송봉근 (고려대학교 산업경영공학과) ;
  • 김근형 (LIG넥스원 ILS연구센터) ;
  • 김용국 (LIG넥스원 ILS연구센터) ;
  • 박승환 (고려대학교 산업경영공학과) ;
  • 백준걸 (고려대학교 산업경영공학과)
  • Received : 2016.08.26
  • Accepted : 2016.10.07
  • Published : 2016.10.31

Abstract

Weapon systems require reliability in the development phase for efficient combat readiness. Improved reliability in various manufacturing processes have been achieved using data analysis. However, data analysis in the development phase is difficult due to problems such as the lack of data, high cost, and the importance of security. Therefore, Post Logistics Support (PLS) data collected following integration is analyzed for long-term quality improvement of weapon systems. In this study, we propose a methodology for examining the correlation between the failure rate and PLS data as follows: First, key variables affecting reliability were identified the correlation between variables on the failure rate examined. Second, corresponding analysis was conducted for determining the correlation between patterns of categorical data. Third, extract categories with the higher contribution and quality of representation, and find the highest variable correlated with failure period through visualization. Then, after selecting patterns which have shorter failure period, the cause of decreased reliability was confirmed through frequency analysis. This study will contribute to improving reliability when developing new weapon systems and will help to strengthen the combat readiness of military.

무기체계는 효율적인 전투준비태세를 갖추기 위해 개발단계의 신뢰성을 중요시하고 있다. 이미 제조업을 중심으로 다양한 분야에서 데이터 분석을 활용한 신뢰성 향상이 이루어지고 있다. 하지만 무기체계 개발단계는 보안의 중요성, 데이터의 부족 등으로 데이터 분석이 어려운 실정이다. 따라서 장기적인 무기체계 품질향상을 위해 전력화 이후의 장비 정보가 수집된 후속군수지원 데이터 분석을 수행하였다. 본 연구의 제안하는 방법론은 후속군수지원 데이터를 통해 목적변수인 고장발생기간을 중심으로 상관성 패턴을 파악하는 것이며, 절차는 다음과 같다. 첫 번째, 신뢰성에 영향을 미치는 주요 변수를 선택하고 고장발생기간을 중심으로 변수 간 상관성을 파악하였다. 두 번째, 범주형 데이터 특성을 갖는 데이터로부터 상관성 패턴을 파악하기 위해 대응분석 기법을 적용하여 분석을 수행하였다. 세 번째, 기여도와 표현력이 높은 범주들을 추출하고 시각화를 통해서 고장발생기간과 가장 관련이 높은 변수를 찾았다. 그리고 고장발생기간이 짧은 변수의 패턴을 선별하고 빈도분석을 통해서 신뢰성 저하 요인들을 파악하였다. 따라서 본 연구는 신무기 개발 시 신뢰성 저하 요인을 제거하여 군의 전투준비태세 강화에 도움이 될 것으로 기대한다.

Keywords

References

  1. "Bigdata Monthly, BigData Trends and Issues", vol. 10, 2015
  2. S.W. Kim, G.G. Kim, Bong-Kyu Yoon, "A Study on a Way to Utilize Big Data Analytics in the Defense Area", Korean Operations Research And Management Society, vol. 39, no. 2, pp. 1-19, 2014. DOI: http://dx.doi.org/10.7737/JKORMS.2014.39.4.001
  3. K.S. Lee, "Construction and Application of the Defense Acquisition Database as a Big Data", Institute of Control, Robotics and Systems, pp. 125-137, 2012.
  4. S.Y. Jeon, D.H. Lee, Manjae Bae, "Study on the Application Method of Munition's Quality Information based on Big Data", Korea Academia-Industrial cooperation Society, vol. 17, no. 6, pp. 315-325, 2016.
  5. C.G. Ku, G.Y. Yoo, Y.H. Kim, J.H. Ahn, "Big data and Application of Logistics field", Korea Defense Industry Association, vol. 446, pp. 62-73, 2016.
  6. J.Y. Moon, "The Total Life Cycle System Management(TLCSM) for weapon systems Suggestions", Korea Defense Industry Association, vol. 435, pp. 76-83, 2015.
  7. H.E. Kim, B.S. Kang "Improve the reliability of machinery parts", The Korean Society of Mechanical Engineers, vol. 51, no. 8, pp. 34-38, 2011.
  8. D.H. Kim, "A Study on the Test & Evaluation Method of Guided Missiles based on Reliability Growth Management", Kwangwoon University, 107, 2015.
  9. G.H. Kim, Y.K. Kim, S.H. Park, "A framework for Quality Improvement in weapon systems using Post-Logistics Support Data", Korea Academia-Industrial cooperation Society, vol. 17, no. 5, pp. 680-687, 2016.
  10. T.G. Kim, G.B. Wi, N.C. Lee, "The Research on the Applying Method for the Life Cycle Sustainment Plan of the weapon systems", Korea Institution of National Defense Development, 222, 2012.
  11. H.G. Kim, S.M. Kwon, K.H. Cho, S.I. Sung, "Development of Quality Improvement Process based on the Maintenance Data of weapon systemss", Defense Agency for Technology and Quality, vol. 43, no. 4, pp. 499, 2015. DOI: http://dx.doi.org/10.7469/jksqm.2015.43.4.499
  12. I.H. Chung, H.Y. Lee, Y.I. Park, "Reliability Evaluation of weapon systems using Field Data: Focusing on Case Study of K-series weapon systems", The Korean Society for Quality Management, vol. 40, no. 3, pp. 278, 2012. DOI: http://dx.doi.org/10.7469/JKSQM.2012.40.3.278
  13. M.H. Huh, "Exploratory data analysis using R", pp37-38, Freeacademi, 2007.
  14. Doey, Laura, Jessica Kurta, "Correspondence analysis applied to psychological research.", Tutorials in Quantitative Methods for Psychology vol. 7, no. 1, pp. 5-14, 2011. DOI: http://dx.doi.org/10.20982/tqmp.07.1.p005
  15. Beh, Eric J. "Simple correspondence analysis using adjusted residuals.", Journal of Statistical Planning and Inference, vol. 142, no. 4, pp. 965-973, 2012. DOI: http://dx.doi.org/10.1016/j.jspi.2011.11.004
  16. Bendixen, Mike. "A practical guide to the use of correspondence analysis in marketing research." Marketing Research On-Line 1.1, 16-36, 1996.
  17. wHerman, Steve, "MCA+.", New Jersey: Bretton-Clark, 1991.
  18. Fayyad, Usama, Gregory Piatetsky-Shapiro, and Padhraic Smyth. "From data mining to knowledge discovery in databases." AI magazine 17.3, 1996.
  19. Alberti, Gianmarco, "An R script to facilitate Correspondence Analysis: a guide to the use and the interpretation of results from an archaeological perspective.", Archeologia e calcolatori 24, pp. 25-53, 2013.
  20. Greenacre, Michael, "Correspondence analysis in practice", CRC press, 87, 2007. DOI: http://dx.doi.org/10.1201/9781420011234
  21. Muhlenbach, Fabrice, and Ricco Rakotomalala, "Discretization of continuous attributes.", Encyclopedia of Data Warehousing and Mining 1 , pp. 397-402, 2005. DOI: http://dx.doi.org/10.4018/978-1-59140-557-3.ch076