Comparative studies of various transfection processes for the optimal luminescence signal analysis

최적의 luminescence 신호 분석을 위한 유전자 전달 방법의 비교연구

  • Park, Seohyun (Department of Biomedical Technology, Sangmyung University) ;
  • Lee, Sunghou (Department of Biomedical Technology, Sangmyung University)
  • 박서현 (상명대학교 의생명공학과) ;
  • 이승호 (상명대학교 의생명공학과)
  • Received : 2016.09.26
  • Accepted : 2016.11.10
  • Published : 2016.11.30


By minimizing fluorescence interference phenomena, aequorin-based luminescence technology can provide a relatively sensitive detection platform with integration of $G{\alpha}16$ protein in order to track internal calcium mobilization by G protein-coupled receptors (GPCR). In this type of cell-based functional assay format, it is essential to optimize the transfection process of a receptor and $G{\alpha}16$ protein. For this study, corticotropin releasing factor receptor subtype 2(CRF2) was set as a model system to generate three stable cells with CRF2 and $G{\alpha}16$ in addition to transiently transfected cells under three different conditions. Agonist (sauvagine) and antagonist (K41498) responses in those cells were analyzed to develop the optimum transfection process. As a result, the effective signal ratio in the dose response experiments of sauvagine and K41498 were at least 10-fold higher (z'=0.77) in CRF2-$G{\alpha}16$ stable cells. For the transient transfection cells, stable expression of $G{\alpha}16$ prior to the CRF2 represented a two-fold higher signal (z'=0.84) than the other cases of transient transfection. In conclusion, for the utilization of transient transfection processes to develop a cell-based GPCR functional assay system, it is suggested to introduce various target receptors after stable expression of $G{\alpha}16$ protein.

형광 간섭 현상을 최소화시켜 상대적으로 민감한 측정이 가능한 aequorin기반 luminescence기술은 $G_{{\alpha}16}$ 단백질 도입을 통해 세포 내부의 칼슘 이동 신호를 감지하여 G 단백질 결합 수용체(G protein-coupled receptor, GPCR)의 기능 분석을 가능하게 하는 세포 기반 분석 기술로 수용체 및 G 단백질 유전자 전달의 최적화 과정이 필수적이다. 본 연구를 위해 corticotropin releasing factor receptor subtype 2(CRF2) 수용체를 모델 시스템으로 CRF2와 $G_{{\alpha}16}$ 단백질이 구축된 세 가지 안정화 세포주를 제작하였고, 이들을 이용한 서로 다른 세 가지 조건의 임시 발현 세포주에서 작용제(sauvagine)와 길항제(K41498)의 반응성을 분석하여 최적의 유전자 전달 방법을 도출하고자 하였다. 그 결과 sauvagine 및 K41498의 농도에 따른 반응에서 CRF2-$G_{{\alpha}16}$ 안정화 세포주가 임시 발현 세포주보다 10배 이상의 유효신호 비율을 나타내었고(z'=0.77) 임시 발현 세포주의 경우 $G_{{\alpha}16}$의 안정화 발현 이후에 CRF2를 전달하는 경우가 다른 임시 발현 조건보다 2배 이상 높은 효율을 보였다(z'=0.84). 따라서 임시 유전자 전달 기술을 GPCR 세포 기능 분석 시스템에 활용할 경우 $G_{{\alpha}16}$ 단백질에 대한 안정화 세포주를 우선적으로 구축하고, 목표하는 다양한 수용체들을 단계적으로 발현시키는 것이 최선의 방법이라 판단된다.


Supported by : 상명대학교


  1. J. Drews, "Drug discovery: a historical perspective", Science, 287(5460), pp. 1960-1964, 2000. DOI:
  2. D. Zhang, Q. Zhao, B. Wu, "Structural studies of G protein-coupled receptors", Mol Cells, 38(10), pp. 836-842, 2015. DOI:
  3. Y. W. Kim, H. S. Kim, S. Y. Kim, Y. H. Choi, S. H. Moh, Y. W. Cheon, "Development of scar improving materials using enkephalin derivatives", J Korea Acad Cooper Soc, 16(8), pp. 5336-5342, 2015. DOI:
  4. I. Y. Ku, S. J. Moon, K. H. Ka, M. K. Park, "Effects of carbenoxolone and P2X receptor antagonist combined therapy on oral neuropathic pain in rat", J Korea Acad Cooper Soc, 17(2), pp. 123-128, 2016.
  5. B. U. Ki, S. Y. Lee, "Role of Rab11 on membrane trafficking of rat vanilloid receptor, TRPV1, J Korea Acad Cooper Soc, 12(7), pp. 3096-3102, 2011.
  6. X. Wu, J. F. Glickman, B. R. Bowen, M. A. Sills, "Comparison of assay technologies for a nuclear receptor assay screen reveals differences in the sets of identified functional antagonists", J Biomol Screen, 8(4), pp. 391-392, 2003. DOI:
  7. T. K. Kim, J. H. Eberwine, "Mammalian cell transfection: the present and the future", Anal Bioanal Chem, 397(8), pp. 3173-3178, 2010. DOI:
  8. K. A. Paschos, E. Chouridou, M. Koureta, M. Lambropoulou, G. Kolios, E. Chatzaki, "The corticotropin releasing factor system in the liver: expression, actions and possible implications in hepatic physiology and pathology", Hormones (Athens), 12(2), pp. 236-245, 2013. DOI:
  9. E. D. Reinbold, J. L. Scholl, K. M. Oliver, M. J. Watt, G. L. Forster, "Central CRF2 receptor antagonism reduces anxiety states during amphetamine withdrawal", Neurosci Res, 89, pp. 37-43, 2014. DOI:
  10. J. Sanders, C. Nemeroff, "The CRF system as a therapeutic target for neuropsychiatric disorders", Trends Pharmacol Sci, doi: 10.1016/, 2016. (Epub ahead of print). DOI:
  11. H. Noh, and S. Lee, "Optimization of the cryopreserved condition for utilization of GPCR frozen cells", J Korea Acad Cooper Soc, 16(2), pp. 1200-1206, 2015. DOI:
  12. H. Noh, S. Lee, "Development of an aequorin-based assay for the screening of corticotropin-releasing factor receptor antagonists", J Korea Acad Cooper Soc, 16(11), pp. 7575-7581, 2015. DOI:
  13. D. Prasher, R. O. McCann, M. J. Cormier, "Cloning and expression of the cDNA coding for aequorin, a bioluminescent calcium-binding protein", Biochem Biophys Res Commun, 126(3), pp. 1259-1268, 1985. DOI:
  14. D. Button, M. Brownstein, "Aequorin-expressing mammalian cell lines used to report Ca2+ mobilization", Cell Calcium, 14(9), pp. 663-671, 1993. DOI:
  15. C. W. Liaw, T. W. Lovenberg, G. Barry, T. Oltersdorf, D. E. Grigoriadis, E. B. de Souza, "Cloning and characterization of the human corticotropin-releasing factor-2 receptor complementary deoxyribonucleic acid", Endocrinol, 137(1), pp. 72-77, 1996. DOI:
  16. T. Riss, R. Moravec, A. Niles, "Selecting cell-based assays for drug discovery screening", Cell note, 13, pp. 16-21, 2005.
  17. J. H. Zhang, T. D. Chung, K. R. Oldenburg, "A simple statistical parameter for use in evaluation and validation of high throughput screening assays", J Biomol Screen, 4(2), pp. 67-73, 1999. DOI:
  18. D. Y. Oh, J. Y. Seong, "Physiological function of G protein-coupled receptors(GPCRs) and research trends for orphan GPCRs", J Korean Soc Endocrinol, 20(3), pp. 185-199, 2005. DOI:
  19. W. Thomsen, J. Frazer, D. Unett, "Functional assays for screening GPCR targets", Curr Opin Biotechnol, 16(6), pp. 655-665, 2005. DOI:
  20. P. J. Knight, T. A. Pfeifer, T. A. Grigliatti, "A functional assay for G-protein-coupled receptors using stably transformed insect tissue culture cell lines", Anal Biochem, 320(1), pp. 88-103, 2003. DOI:
  21. T. Zhu, L. Y. Fang, X. Xie, "Development of a universal high-throughput calcium assay for G protein-coupled receptors with promiscuous G-protein $G_{{\alpha}15/16}$", Acta Pharmacol Sin, 29(4), pp. 507-516, 2008. DOI:
  22. V. Menon, A. Ranganathn, V. H. Jorgensen, M. Sabio, C. T. Christoffersen, M. A. Uberti, K. A. Jones, P. S. Babu, "Development of an aequorin luminescence calcium assay for high-throughput screening using a plate reader, the lumilux", Assay Drug Dev Technol, 6(6), pp. 787-793, 2008. DOI:
  23. D. Wu, A. Katz, C. H. Lee, M. I. Simon, "Activation of phospholipase C by alpha 1-adrenergic receptors is mediated by the alpha subunits of Gq family", J Biol Chem, 267(36), pp. 25798-25802, 1992.
  24. B. R. Conkin, Z. Farfel, K. D. Lustig, D. Julius, H. R. Bourne, "Substitution of three amino acids switches receptor specificity of Gq alpha to that of Gi alpha", Nature, 363(6426), pp. 274-276, 1993. DOI:
  25. A. Heydorn, R. J. Ward, R. Jorgensen, M. M. Rosenkilde, T. M. Frimurer, G. Milligan, E. Kostenis, "Identification of a novel site within G protein alpha subunits important for specificity of receptor-G protein interaction", Mol Pharmacol, 66(2), pp. 250-259, 2004. DOI:
  26. P. Molinari, C. Ambrosio, D. Riitano, M. Sbraccia, M. C. Gro, T. Costa, "Promiscuous coupling at receptor-G alpha fusion proteins", J Biol Chem, 278(18), pp. 15778-15788, 2003. DOI: