DOI QR코드

DOI QR Code

Analysis on the sediment sluicing efficiency by variation of operation water surface elevation at flood season

홍수기 운영수위 변화에 따른 배사 효율 분석

  • Jeong, Anchul (Department of Civil Engineering, Chungnam National University) ;
  • Kim, Seongwon (Department of Civil Engineering, Chungnam National University) ;
  • Kim, Minseok (International Water Resources Research Institute, Chungnam National University) ;
  • Jung, Kwansue (Department of Civil Engineering, Chungnam National University)
  • 정안철 (충남대학교 공과대학 토목공학과) ;
  • 김성원 (충남대학교 공과대학 토목공학과) ;
  • 김민석 (충남대학교 국제수자원연구소) ;
  • 정관수 (충남대학교 공과대학 토목공학과)
  • Received : 2016.09.20
  • Accepted : 2016.11.03
  • Published : 2016.12.31

Abstract

In general, efficient operation of sediment sluicing is important in economical aspect. In this study, the efficiency of sediment sluicing by various operation at water surface elevation on multi-functional weirs were analyzed using Nays2DH, and we focused on the Dalsung weir at Nakdong river. The results of this study shows that, the same number of flushing channels and water gates were developed due to sediment sluicing, and sediment deposition occurred in upstream region of flushing channels. Also, the sediment sluicing efficiency increased by approximately 4.6% and sedimentation decreased by approximately 4.5% at EL. 14.5 m for operations on water surface elevation exceeding EL. 14.0 m. The mitigation of reservoir sedimentation and extension of maintenance dredging period are possible if the variation of sediment sluicing efficiency in various operation at water surface elevation during flood season are considered.

일반적으로 배사에 비해서 준설은 경제적 부담이 크기 때문에 배사를 효율적으로 운영하는 것이 중요하다. 본 연구에서는 2차원 하상변동 모형인 Nays2DH를 이용하여 홍수기 운영수위에 따른 배사효율을 낙동강에 위치한 달성보를 중심으로 분석하였다. 분석결과, 가동보의 수 만큼 배사수가 형성되었으며, 배사수로 상류에는 퇴적이 발생하는 것으로 나타났다. 또한, 홍수기 운영수위를 EL. 14.5 m로 운영하는 것이 EL. 14.0 m로 운영하는 것에 비해서 배사효율이 약 4.6% 증가하여 퇴사가 약 4.5% 감소하는 것으로 나타났다. 본 연구에서 분석한 홍수기 운영수위에 따른 배사효율의 변화를 고려한다면, 저수지 퇴사 저감 및 준설주기의 장기화가 가능할 것으로 판단된다.

Keywords

References

  1. Ahn, J., Yang, C. T., Boyd, P. M., Pridal, D. B., and Remus, J. I. (2013). "Numerical modeling of sediment flushing from Lewis and Clark lake." International Journal of Sediment Research, Elsevier, Vol. 28, pp. 182-193. https://doi.org/10.1016/S1001-6279(13)60030-X
  2. Ashida, K. and Michiue, M. (1972). "Study on hydraulic resistance and bed-load transport rate in alluvial streams." Transactions, Japan Society of Civil Engineering, No. 206, pp. 59-64.
  3. Choi, S.-U. and Choi, S. (2012). "A quasi-steady model for sedimentation and flushing of reservoirs." J. Korea Water Resour. Assoc., KWRA, Vol. 45, No. 2, pp. 217-227. https://doi.org/10.3741/JKWRA.2012.45.2.217
  4. Cui, Y., Parker, G., Lisle, T. E., Gott, J., Hansler-Ball, M. E., Pizzuto, J. E., Allmendinger, N. E., and Reed, J. M. (2003). "Sediment pulses in mountain rivers: 1. Experiments." Water Resources Research, AGU, Vol. 39, No. 9, p. 1239.
  5. Hajiabadi, R. and Zarghami, M. (2014). "Multi-objective reservoir operation with sediment flushing; case study of Sefidrud reservoir." Water Resour Manage, Springer, Vol. 28, pp. 5357-5376. https://doi.org/10.1007/s11269-014-0806-9
  6. Jang, C.-L., Lim, K.-S., and Hwang, M. H. (2011). "Flushing sediment technique for mitigation of sedimentation in reservoir." Water for Future, KWRA, Vol. 44, No. 11, pp. 45-49.
  7. Jeong, A. and Jung, K. (2015). "Analysis of long-term riverbed-level and flood stage variation due to water gate operation of multifunctional weirs at Geum river." J. Korea Water Resour. Assoc., KWRA, Vol. 48, No. 5, pp. 379-391. https://doi.org/10.3741/JKWRA.2015.48.5.379
  8. Jeong, A., Kim, S., Kim, M., and Jung, K. (2015). "Environmental windows setting method for environmental-friendly river dredging in Nakdong river basin." Journal of environmental policy, Vol. 14, No. 4, pp. 45-61. https://doi.org/10.17330/joep.14.4.201512.45
  9. Ji, U. and Jang, E. K. (2016). "Numerical analysis of lateral geomorphology changes by channel bed deposition and bank erosion at the river confluence section." J. Korea Water Resour. Assoc., KWRA, Vol. 49, No. 5, pp. 391-398. https://doi.org/10.3741/JKWRA.2016.49.5.391
  10. Ji, U., Julien, P. Y., and Park, S. K. (2011). "Sediment flushing at the Nakdong river estuary barrage." Journal of Hydraulic Engineering, ASCE, Vol. 137, No. 11, pp. 1522-1535. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000395
  11. Kang, K.-H., Jang, C.-L., Lee, G. H., and Jung, K. (2016). "Numerical analysis of the morphological changes by sediment supply at the downstream channel of Youngju dam." J. Korea Water Resour. Assoc., KWRA, Vol. 49, No. 8, pp. 693-705. https://doi.org/10.3741/JKWRA.2016.49.8.693
  12. Kondolf, G. M., Gao, Y., Annandale, G. W., Morris, G. L., Jiang, E., Zhang, J., Cao, Y., Carling, P., Fu, K., Guo, Q., Hotchkiss, R., Peteuil, C., Sumi, T., Wang, H.-W., Wang, Z., Wei, Z., Wu, B., Wu, C., and Yang, C. T. (2014). "Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents." Earth's Future, Vol. 2, No. 5, pp. 256-280. https://doi.org/10.1002/2013EF000184
  13. Krause, P., Boyle, D. P., and Base, F. (2005). "Comparison of different efficiency criteria for hydrological model assessment." Advances in Geosciences, European Geosciences Union, Vol. 5, pp. 89-97.
  14. Ku, Y. H., Song, C. G., Park, Y.-S., and Kim, Y. D. (2015). "A study on the field application of Nays2D model for evaluation of riverfront facility flood risk." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 35, No. 3, pp. 579-588. https://doi.org/10.12652/Ksce.2015.35.3.0579
  15. K-water (2012). Dam operational practices handbook.
  16. Meyer-Peter, E. and Mueller, R. (1948). "Formulas for bed-load transport." Proceedings of the 2nd Meeting of the International Association for Hydraulic, International Association of Hydraulic Research, Delft, Sweden, pp. 39-64.
  17. Nelson, J. M., Shimizu, Y., Abe, T., Asahi, K., Gamou, M., Inoue, T., Iwasaki, T., Kakinuma, T., Kawamura, S., Kimura, I., Kyuka, T., McDonald, R. R., Nabi, M., Nakatsugawa, M., Simoes, F. R., Takebayashi, H., and Watanabe, Y. (2016). "The international river interface cooperative: Public domain flow and morphodynamics software for education and applications." Advances in Water Resources, Vol. 93, pp. 62-74. https://doi.org/10.1016/j.advwatres.2015.09.017
  18. Noh, J., Lee, K., Hur, Y., and Kim, Y. (2014). "Simulation of long-term reservoir sedimentation and flushing." J. Korean Soc. Hazard Mitig., KOSHAM, Vol. 14, No. 4, pp. 333-341. https://doi.org/10.9798/KOSHAM.2014.14.4.333
  19. Shen, H. W. (1999). "Flushing sediment through reservoir." Journal of Hydraulic Research, Vol. 37, No. 6, pp. 743-757. https://doi.org/10.1080/00221689909498509
  20. Shimizu, Y., Takebayashi, H., Inoue, T., Hamake, M., Iwasaki, T., and Nabi, M. (2014). iRIC Software: Nays2DH Solver Manual.
  21. Wong, M. and Parker, G. (2005). "Reanalysis and correction of bedload relation of Meyer-Peter and Muller using their own database." Journal of Hydraulic Engineering, Vol. 132, No. 11, pp. 1159-1168.
  22. Yu, M., Lee, Y., and Yi, J. (2016). "Flood inflow forecasting on Hantan river reservoir by using forecasted rainfall." J. Korea Water Resour. Assoc., KWRA, Vol. 49, No. 4, pp. 327-333. https://doi.org/10.3741/JKWRA.2016.49.4.327

Cited by

  1. Estimation of River Dredging Location and Volume Considering Flood Risk Variation Due to Riverbed Change vol.18, pp.3, 2018, https://doi.org/10.9798/KOSHAM.2018.18.3.279