DOI QR코드

DOI QR Code

Ethanol Extract from Asparagus Cochinchinensis Attenuates Glutamate-Induced Oxidative Toxicity in HT22 Hippocampal Cells

HT22 해마세포의 oxidative toxicity에 대한 천문동 유래 에탄올추출물의 보호 효과

  • Pak, Malk Eun (Department of Korean Medical Science, School of Korean Medicine, Pusan National University) ;
  • Choi, Byung Tae (Department of Korean Medical Science, School of Korean Medicine, Pusan National University)
  • 박맑은 (부산대학교 한의학전문대학원 한의과학과) ;
  • 최병태 (부산대학교 한의학전문대학원 한의과학과)
  • Received : 2016.07.05
  • Accepted : 2016.08.23
  • Published : 2016.12.30

Abstract

We investigated the neuroprotective effect of an ethanol extract from Asparagus cochinchinensis (AC) against glutamate-induced toxicity in the HT22 hippocampal cell, which is an ideal in vitro model for oxidative stress. The neuroprotective effects of AC in HT22 cells were evaluated by analyzing cell viability, lactate dehydrogenase (LDH), flow cytometry for cell death types, reactive oxygen species (ROS), mitochondria membrane potential (MMP), and Western blot assays. In the cell death analysis, AC treatment resulted in significantly attenuated glutamate-induced loss of cell viability with a decrease in LDH release. AC treatment also reduced glutamate-induced apoptotic cell death. In the ROS and MMP analysis, AC treatment inhibited the elevation of intracellular ROS induced by glutamate exposure and the disruption of MMP. In oxidative stress-related proteins analysis, AC treatment inhibited the expression of poly ADP ribose polymerase and heme oxygenase-1 by glutamate. These results indicate that AC exerts a significant neuroprotective effect against glutamate-induced hippocampal damage by decreasing ROS production and stabilizing MMP. Thus, AC potentially provides a new strategy for the treatment of oxidative stress-related diseases.

본 연구는 oxidative stress에 의한 세포죽음 분석의 이상적인 모델로 사용되는 HT22세포를 이용하여 천문동 에탄올추출물의 glutamate에 의한 oxidative toxicity에 대한 신경보호 효과를 살펴보았다. 이를 위해 cell viability, lactate dehydrogenase (LDH), 그리고 세포죽음형태, reactive oxygen species (ROS), mitochondria membrane potential (MMP) 등에 대한 flow cytometry 및 Western blot분석을 이용하였다. 천문동 추출물의 처리는 cell viability 및 LDH분석에서 glutamate에 의한 cell toxicity를 저하시키며, 특히 apoptotic cell death를 현저히 감소시켰다. ROS 및 MMP분석 결과, 천문동 추출물은 ROS의 형성을 저하시키며 glutamate에 의해 저하된 MMP를 현저히 회복시켜 주었다. 이와 관련된 단백질 발현을 보면, 천문동 추출물은 PARP 및 HO-1의 발현을 억제하였다. 이상의 결과는 천문동 추출물이 HT22해마세포에서 ROS형성저해 및 MMP회복에 의해 세포죽음을 완화시켜 보호작용을 하는 것으로 사료되며 oxidative toxicity관련 질환에 적용 가능할 것으로 보여 진다.

Keywords

References

  1. Anand, R., Wai, T., Baker, M. J., Kladt, N., Schauss, A. C., Rugarli, E. and Langer, T. 2014. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell. Biol. 204, 919-929. https://doi.org/10.1083/jcb.201308006
  2. Ankarcrona, M., Dypbukt, J. M., Bonfoco, E., Zhivotovsky, B., Orrenius, S., Lipton, S. A. and Nicotera, P. 1995. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15, 961-973. https://doi.org/10.1016/0896-6273(95)90186-8
  3. Budihardjo, I., Oliver, H., Lutter, M., Luo, X. and Wang, X. 1999. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell. Dev. Biol. 15, 269-290. https://doi.org/10.1146/annurev.cellbio.15.1.269
  4. Choi, D. W. 1988. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623-634. https://doi.org/10.1016/0896-6273(88)90162-6
  5. Choi, D. W. 1992. Excitotoxic cell death. J. Neurobiol. 23, 1261-1276. https://doi.org/10.1002/neu.480230915
  6. Colussi, P. A., Harvey, N. L., Shearwin-Whyatt, L. M. and Kumar, S. 1998. Conversion of procaspase-3 to an autoactivating caspase by fusion to the caspase-2 prodomain. J. Biol. Chem. 273, 26566-26570. https://doi.org/10.1074/jbc.273.41.26566
  7. Davis, J. B. and Maher, P. 1994. Protein kinase C activation inhibits glutamate-induced cytotoxicity in a neuronal cell line. Brain Res. 652, 169-173. https://doi.org/10.1016/0006-8993(94)90334-4
  8. Fukui, M., Song, J. H., Choi, J., Choi, H. J. and Zhu, B. T. 2009. Mechanism of glutamate-induced neurotoxicity in HT22 mouse hippocampal cells. Eur. J. Pharmacol. 617, 1-11. https://doi.org/10.1016/j.ejphar.2009.06.059
  9. Fukui, M. and Zhu, B. T. 2010. Mitochondrial superoxide dismutase SOD2, but not cytosolic SOD1, plays a critical role in protection against glutamate-induced oxidative stress and cell death in HT22 neuronal cells. Free Radic. Biol. Med. 48, 821-830. https://doi.org/10.1016/j.freeradbiomed.2009.12.024
  10. Halestrap, A. P., Doran, E., Gillespie, J. P. and O'Toole, A. 2000. Mitochondria and cell death. Biochem. Soc. Trans. 28, 170-177. https://doi.org/10.1042/bst0280170
  11. Henchcliffe, C. and Beal, M. F. 2008. Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat. Clin. Pract. Neurol. 4, 600-609.
  12. Jalsrai, A., Numakawa, T., Kunugi, H., Dieterich, D. C. and Becker, A. 2016. The neuroprotective effects and possible mechanism of action of a methanol extract from Asparagus cochinchinensis: In vitro and in vivo studies. Neuroscience 322, 452-463. https://doi.org/10.1016/j.neuroscience.2016.02.065
  13. Jian, R., Zeng, K. W., Li, J., Li, N., Jiang, Y. and Tu, P. 2013. Anti-neuroinflammatory constituents from Asparagus cochinchinensis. Fitoterapia 84, 80-84. https://doi.org/10.1016/j.fitote.2012.10.011
  14. Kim, H., Lee, E., Lim, T., Jung, J. and Lyu, Y. 1998. Inhibitory effect of Asparagus cochinchinensis on tumor necrosis factor-alpha secretion from astrocytes. Int. J. Immunopharmacol. 20, 153-162. https://doi.org/10.1016/S0192-0561(98)00022-8
  15. Lei, L., Ou, L. and Yu, X. 2016. The antioxidant effect of Asparagus cochinchinensis (Lour.) Merr. shoot in d-galactose induced mice aging model and in vitro. J. Chin. Med. Assoc. 79, 205-211. https://doi.org/10.1016/j.jcma.2015.06.023
  16. Lin, M. T. and Beal, M. F. 2006. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787-795. https://doi.org/10.1038/nature05292
  17. Liu, H., Mao, P., Wang, J., Wang, T. and Xie, C. H. 2015. Allicin protects PC12 cells against 6-OHDA-induced oxidative stress and mitochondrial dysfunction via regulating mitochondrial dynamics. Cell. Physiol. Biochem. 36, 966-979. https://doi.org/10.1159/000430271
  18. Lo, E. H., Moskowitz, M. A. and Jacobs, T. P. 2005. Exciting, radical, suicidal: how brain cells die after stroke. Stroke 36, 189-192. https://doi.org/10.1161/01.STR.0000153069.96296.fd
  19. Maher, P. and Davis, J. B. 1996. The role of monoamine metabolism in oxidative glutamate toxicity. J. Neurosci. 16, 6394-6401. https://doi.org/10.1523/JNEUROSCI.16-20-06394.1996
  20. Murphy, T. H., Miyamoto, M., Sastre, A., Schnaar, R. L. and Coyle, J. T. 1989. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 2, 1547-1558. https://doi.org/10.1016/0896-6273(89)90043-3
  21. Nikolova, S., Lee, Y. S., Lee, Y. S. and Kim, J. A. 2005. Rac1- NADPH oxidase-regulated generation of reactive oxygen species mediates glutamate-induced apoptosis in SH-SY5Y human neuroblastoma cells. Free Radic. Res. 39, 1295-1304. https://doi.org/10.1080/10715760500176866
  22. Pak, M. E., Kim, Y. R., Kim, H. N., Ahn, S. M., Shin, H. K., Baek, J. U. and Choi, B. T. 2016. Studies on medicinal herbs for cognitive enhancement based on the text mining of Dongeuibogam and preliminary evaluation of its effects. J. Ethnopharmacol. 179, 383-390. https://doi.org/10.1016/j.jep.2016.01.006
  23. Pallast, S., Arai, K., Wang, X., Lo, E. H. and van Leyen, K. 2009. 12/15-Lipoxygenase targets neuronal mitochondria under oxidative stress. J. Neurochem. 111, 882-889. https://doi.org/10.1111/j.1471-4159.2009.06379.x
  24. Pietrofesa, R. A., Velalopoulou, A., Lehman, S. L., Arguiri, E., Solomides, P., Koch, C. J., Mishra, O. P., Koumenis, C., Goodwin, T. J. and Christofidou-Solomidou, M. 2016. Novel double-hit model of radiation and hyperoxia-induced oxidative cell damage relevant to space travel. Int. J. Mol. Sci. 17, 953-975. https://doi.org/10.3390/ijms17060953
  25. Starkov, A. A., Chinopoulos, C. and Fiskum, G. 2004. Mitochondrial calcium and oxidative stress as mediators of ischemic brain injury. Cell Calcium 36, 257-264. https://doi.org/10.1016/j.ceca.2004.02.012
  26. Tan, S., Schubert, D. and Maher, P. 2001. Oxytosis: A novel form of programmed cell death. Curr. Top. Med. Chem. 1, 497-506. https://doi.org/10.2174/1568026013394741
  27. Tan, S., Wood, M. and Maher, P. 1998. Oxidative stress induces a form of programmed cell death with characteristics of both apoptosis and necrosis in neuronal cells. J. Neurochem. 71, 95-105.
  28. Xiong, D., Yu, L. X., Yan, X., Guo, C. and Xiong, Y. 2011. Effects of root and stem extracts of Asparagus cochinchinensis on biochemical indicators related to aging in the brain and liver of mice. Am. J. Chin. Med. 39, 719-726. https://doi.org/10.1142/S0192415X11009159
  29. Yan, M. H., Wang, X. and Zhu, X. 2013. Mitochondrial defects and oxidative stress in Alzheimer disease and Parkinson disease. Free Radic. Biol. Med. 62, 90-101. https://doi.org/10.1016/j.freeradbiomed.2012.11.014
  30. Zhang, Y. and Bhavnani, B. R. 2005. Glutamate-induced apoptosis in primary cortical neurons is inhibited by equine estrogens via down-regulation of caspase-3 and prevention of mitochondrial cytochrome c release. BMC Neurosci. 6, 13-35. https://doi.org/10.1186/1471-2202-6-13