DOI QR코드

DOI QR Code

Comparison of Organic Acid Contents and Xanthine Oxidase Inhibitory Activities of Commercial Fruit Juices and Vinegars

시판 과일 주스와 식초의 유기산 함량과 Xanthin Oxidase 저해 활성 비교

  • Hwang, Ji-Young (Department of Food and Nutrition, Sungshin Women's University) ;
  • Pyo, Young-Hee (Department of Food and Nutrition, Sungshin Women's University)
  • 황지영 (성신여자대학교 식품영양학과) ;
  • 표영희 (성신여자대학교 식품영양학과)
  • Received : 2016.07.20
  • Accepted : 2016.09.21
  • Published : 2016.11.30

Abstract

Xanthine oxidase (XO) inhibitors play an important role in the treatment of gout and many other diseases related to superoxide anion metabolism. In this study, four commercial fruit juices and three vinegars were evaluated for their inhibitory activity of XO (XOI), as well as contents of organic acids by HPLC with UV detection. Five different organic acids were detected in commercial samples: acetic acid and malic acid were the most prominent in vinegars and fruit juices, respectively. The vinegars showed high XOI activity (33.8~64.9%) related to the great concentration of acetic acid ($R^2=0.7192$). The presence of acetic acid in vinegar could be responsible for its XOI effect.

시판 과일 주스와 발효식초의 총 페놀 함량, 플라보노이드함량, 유기산 함량, 그리고 xanthine oxidase(XO) 저해 활성을 비교하였다. 과일 주스와 식초에 함유된 총 페놀(mg gallic acid equivalent/100 mL)과 플라보노이드(mg catechin equivalent/100 mL) 함량은 각각 82.8~157.6 mg과 15.7~85.8 mg으로 측정되었다. 주스류에서는 사과 주스, 식초류에서는 흑초가 각각 가장 높은 총 페놀 함량과 플라보노이드를 함유하였다. 유기산의 함량 중 citric acid, malic acid, ascorbic acid는 주로 과일 주스에서 검출되었다. Acetic acid가 주성분인(688.3~4,413.7 mg/100 mL) 식초류 중에서 흑초는 acetic acid뿐 아니라 citric acid, malic acid, tartaric acid를 함유하여 유기산의 분포가 가장 다양하였다. XO 저해 활성은 과일 주스보다 식초가 평균 34.2% 더 높게 측정되었으며, 흑초는 64.9%로 가장 높은 저해 활성을 나타내었다. 특히 유기산의 종류 중에서 아세트산의 함량과 XO 저해 활성 간에 높은 정의 상관성이 존재하여($R^2=0.7192$) 식초류의 XO 저해 활성의 주요 지표물질로 나타났다.

Keywords

References

  1. Richette P, Bardin T. 2010. Gout. Lancet 375: 318-328. https://doi.org/10.1016/S0140-6736(09)60883-7
  2. Hayden MR, Tyagi SC. 2004. Uric acid: A new look at an old risk marker for cardiovascular disease, metabolic syndrome, and type 2 diabetes mellitus: The urate redox shuttle. Nutr Metab 1: 10-25. https://doi.org/10.1186/1743-7075-1-10
  3. Kong LD, Cai Y, Huang WW, Cheng CH, Tan RX. 2000. Inhibition of xanthine oxidase by some Chinese medicinal plants used to treat gout. J Ethnopharmacol 73: 199-207. https://doi.org/10.1016/S0378-8741(00)00305-6
  4. Nguyen MT, Awale S, Tezuka Y, Tran QL, Watanabe H, Kadota S. 2004. Xanthine oxidase inhibitory activity of Vietnamese medicinal plants. Biol Pharm Bull 27: 1414-1421. https://doi.org/10.1248/bpb.27.1414
  5. Pauff JM, Hille R. 2009. Inhibition studies of bovine xanthine oxidase by luteolin, silibinin, quercetin, and curcumin. J Nat Prod 72: 725-731. https://doi.org/10.1021/np8007123
  6. Hayashi T, Sawa K, Kawasaki M, Arisawa M, Shimizu M, Morita N. 1988. Inhibition of cow's milk xanthine oxidase by flavonoids. J Nat Prod 51: 345-351. https://doi.org/10.1021/np50056a030
  7. Lin SM, Wu JY, Su C, Ferng S, Lo CY, Chiou RY. 2012. Identification and mode of action of 5-hydroxymethyl-2-furfural (5-HMF) and 1-methyl-1,2,3,4-tetrahydro-${\beta}$-carboline-3-carboxylic acid (MTCA) as potent xanthine oxidase inhibitors in vinegars. J Agric Food Chem 60: 9856-9862. https://doi.org/10.1021/jf302711e
  8. Pacher P, Nivorozhkin A, Szabo C. 2006. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev 58: 87-114. https://doi.org/10.1124/pr.58.1.6
  9. Samad A, Azlan A, Ismail A. 2016. Therapeutic effects of vinegar. Current Opinion Food Sci 8: 56-61. https://doi.org/10.1016/j.cofs.2016.03.001
  10. Singleton VL, Orthofer R, Lamuela-Raventos RM. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol 299: 152-178.
  11. Zhishen J, Mengcheng T, Jianming W. 1999. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64: 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
  12. Scherer R, Rybka ACP, Ballus CA, Meinhart AD, Filho JT, Godoy HT. 2012. Validation of a HPLC method for simultaneous determination of main organic acids in fruits and juices. Food Chem 135: 150-154. https://doi.org/10.1016/j.foodchem.2012.03.111
  13. Stirpe F, Della Corte E. 1969. The regulation of rat liver xanthine oxidase. Conversion in vitro of the enzyme activity from dehydrogenase (type D) to oxidase (type O). J Biol Chem 244: 3855-3861.
  14. Kim KO, Kim SM, Kim SM, Kim DY, Jo D, Yeo SH, Jeong YJ, Kwon JH. 2013. Physicochemical properties of commercial fruit vinegars with different fermentation methods. J Korean Soc Food Sci Nutr 42: 736-742. https://doi.org/10.3746/jkfn.2013.42.5.736
  15. Lourdes Morales M, Gustavo Gonzalez A, Troncoso AM. 1998. Ion-exclusion chromatographic determination of organic acids in vinegars. J Chromatogr A 822: 45-51. https://doi.org/10.1016/S0021-9673(98)00572-X
  16. Mato I, Suarez-Luque S, Huidobro JF. 2005. A review of the analytical methods to determine organic acids in grape juices and wines. Food Res Int 38: 1175-1188. https://doi.org/10.1016/j.foodres.2005.04.007
  17. Chung N, Jo Y, Gao Y, Gu SY, Jeong YJ, Kwon JH. 2015. Comparison of physicochemical properties and antioxidant activities of naturally fermented commercial rice vinegars produced in Korea, China, and Japan. J Korean Soc Food Sci Nutr 44: 1799-1805. https://doi.org/10.3746/jkfn.2015.44.12.1799
  18. Yeo SG, Park YB, Kim IS, Kim SB, Park YH. 1995. Inhibition of xanthine oxidase by tea extracts from green tea, oolong tea and black tea. J Korean Soc Food Nutr 24: 154-159.
  19. Johnston CS, Quagliano S, White S. 2013. Vinegar ingestion at mealtime reduced fasting blood glucose concentrations in healthy adults at risk for type 2 diabetes. J Funct Foods 5: 2007-2011. https://doi.org/10.1016/j.jff.2013.08.003
  20. Petsiou EI, Mitrou PI, Raptis SA, Dimitriadis GD. 2014. Effect and mechanisms of action of vinegar on glucose metabolism, lipid profile, and body weight. Nutr Rev 72: 651-661. https://doi.org/10.1111/nure.12125
  21. Budak NH, Aykin E, Seydim AC, Greene AK, Guzel-Seydim ZB. 2014. Functional properties of vinegar. J Food Sci 79: R757-R764. https://doi.org/10.1111/1750-3841.12434
  22. US Food and Drug Administration. www.fda.gov/ICECI/ComplianceManuals/CompliancePolicyGuidanceManual/ucm074471.htm (accessed Mar 2015).

Cited by

  1. 첨가당의 종류에 따른 저장 중 식초음료의 품질특성 vol.52, pp.4, 2016, https://doi.org/10.9721/kjfst.2020.52.4.325