DOI QR코드

DOI QR Code

Antioxidant capacity and Raw 264.7 macrophage anti-inflammatory effect of the Tenebrio Molitor

갈색거저리(Tenebrio Molitor)의 항산화능과 Raw 264.7 대식세포의 항염증 효과

  • Yu, Jae-Myo (Department of Cosmeceutical Science, DaeguHanny University) ;
  • Jang, Jae-Yoon (Department of Cosmeceutical Science, DaeguHanny University) ;
  • Kim, Hyeon-Jeong (Department of Cosmeceutical Science, DaeguHanny University) ;
  • Cho, Yong-Hun (Department of Cosmeceutical Science, DaeguHanny University) ;
  • Kim, Dong-in (Department of Cosmeceutical Science, DaeguHanny University) ;
  • Kwon, O-jun (Regional industry Evaluation Agency for Gyeongbuk) ;
  • Cho, Yeong-Je (School of Food Science and Biotechnology / Food and Bio-Industry Research Institute, Kyungpook National University) ;
  • An, Bong-Jeun (Department of Cosmeceutical Science, DaeguHanny University)
  • 유재묘 (대구한의대학교 화장품약리학과) ;
  • 장재윤 (대구한의대학교 화장품약리학과) ;
  • 김현정 (대구한의대학교 화장품약리학과) ;
  • 조용훈 (대구한의대학교 화장품약리학과) ;
  • 김동인 (대구한의대학교 화장품약리학과) ;
  • 권오준 (경북지역산업평가단) ;
  • 조영제 (경북대학교 식품공학부/식품생물산업연구소) ;
  • 안봉전 (대구한의대학교 화장품약리학과)
  • Received : 2016.04.21
  • Accepted : 2016.08.17
  • Published : 2016.11.30

Abstract

The purpose of this paper is to investigate potential anti-inflammatory and anti-oxidant effects of Tenebrio molitor. Macrophage cell response by outside stimulation leads expression of pro-inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), interleukin-6 (IL-6), $interleukin-1{\beta}$ ($IL-1{\beta}$), and trigger expression of genes which are affected by inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), resulting in formation of inflammatory factors like nitric oxide (NO) and Prostaglandin $E_2$ (PGE2). Cell viability was determined by MTT assay. In order to investigate anti-inflammatory agents, the inhibitory effects on the production of lipopolysaccharide (LPS)-induced NO in RAW 264.7 cells were examined. T. Molitor significantly decreased the production of NO in a dose-dependent manner, and also reduced the expression of iNOS, a COX-2 protein. As a result, the levels of protein such as $PGE_2$, iNOS, COX-2 and MARKs were significantly reduced compared to non-treated group in T. Molitor water extract (TDW) treated group. Also, antioxidant effect of T. Molitor were investigated using DPPH, ABTS+ and superoxide anion radical scavenging activity tests in cell-free system. Antioxidant activity of T. molitor was found low in the DPPH radical scavenging test while high in the ABTS+ and superoxide anion radical scavenging activity tests. These results show that TDW could be an effective anti-pro-inflammatory and anti-oxidant agent.

본 연구의 목적은 갈색거저리의 추출물에 따른 약리활성에 대한 검증 및 효능 평가이다. 갈색거저리의 항산화, 항염증에 대하여 효과를 확인 하였다. 염증 반응은 자극이 가해지면 histamin, serotonin, prostaglandin과 같은 혈관 활성물질에 의해 혈관 투과성이 증대되어 염증을 유발하고 cytokine, free radical, lysosomal enzyme 등 다양한 매개 인자가 관여한다. 자극에 의한 macrophage cell의 염증반응은 tumor necrosis $factor-{\alpha}$($TNF-{\alpha}$), interleukin-6(IL-6), $interleukin-1{\beta}$($IL-1{\beta}$)와 같은 pro-inflammatory cytokine의 발현이 유도되고, inducible nitric oxide synthase(iNOS)와 cyclooxygenase-2(COX-2)에 영향을 받는 유전자의 발현을 자극하게 되어 nitric oxide(NO) 및 $PGE_2$등의 염증 인자가 생성된다. 이에 따라 갈색거지리 추출물의 항염증에 대한 연구를 위해 이에 영향을 주는 인자인 iNOS, COX-2, $PGE_2$, MAPKs의 단백질 발현억제 작용을 확인 하였다. 그 결과 TDW 처리군에서 iNOS 발현율이 19.7%, COX-2의 발현율은 23.2%의 값을 나타내었고, $PGE_2$의 저해 경로를 보기 위해 COX-2의 발현을 mRNA 수준에서 측정한 결과 최고 농도인 $100{\mu}g/mL$에서는 약 60%의 억제효과를 확인할 수 있었다. 결론적으로 TDW는 염증 생성 기전에 작용하여 이 활성을 억제하는데 있어서 효과를 줄 수 있으며 지속적으로 연구해볼 가치가 있다고 사료된다.

Keywords

References

  1. Wattenberg LW (1985) Chemoprevention of cancer. Cancer Res, 45, 1-8
  2. Brieskorn CH, Fuchs A, Bredenberg JB, McChesney JD, Wenkert E (1964) The structure of carnosol. J Org Chem, 29, 2293-2298 https://doi.org/10.1021/jo01031a044
  3. Ding C, Cicuttini F, Li J, Jones G (2009) Targeting IL-6 in the treatment of inflammatory and autoimmune diseases, Expert Opin Investig Drugs, 18, 1457-1466 https://doi.org/10.1517/13543780903203789
  4. Jeong JB, Hong SC, Jeong HJ, Koo JS (2012) Antiinflammatory effects of ethyl acetate fraction from cnidium officinale makino on LPS-stimulated RAW 264.7 and THP-1 cells. Korean J.Plant Res, 25, 299-307
  5. Lee HJ, Hyun EA, Yoon WJ, Kim BH, Rhee MH, Kang HK, Cho JY, Yoo ES (2006) In vitro anti-inflammatory and anti-oxidative effects of cinnamomum camphora extracts. J Ethnopharmacol, 103, 208-216 https://doi.org/10.1016/j.jep.2005.08.009
  6. Kim EY, Moudgil KD (2008) Regulation of autoimmune inflammation by pro-inflammatory cytokines. Immunol Lett, 120, 1-5 https://doi.org/10.1016/j.imlet.2008.07.008
  7. Sims JE, Gayle MA, Slack JL, Alderson MR, Bird TA, Giri JG (1993) Interleukin-1 signaling occurs exclusively via the type I receptor. Proc Natl Acad Sci USA, 90, 6155-6159 https://doi.org/10.1073/pnas.90.13.6155
  8. Grossman RM, Krueger J, Yourish D, Granelli-Piperno A, Murphy DP, May LT (1989) Interleukin-6 is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proc Natl Acad Sci USA, 86, 6367-6371 https://doi.org/10.1073/pnas.86.16.6367
  9. Wilmer JL, Luster MI (1995) Chemical induction of interleukin-8, a proinflammatory chemokine, in human epidermal keratinocyte cultures and its relation to cytogenetic toxicity. Cell Biol Toxicol, 11, 37-50
  10. Park DS, Yoon MZ, Xu H, Yu JR, Kim TS (2004) Screening of anti-atherogenic substances from insect resources. Kor J Pharmacogn, 35, 233-238
  11. Park JY, Heo JC, An SM, Yun EY, Han SM, Hwang SM, Kang SW, Yoon CH, Lee SH (2005) High throughput-compatible screening of anti-oxidative substances by insect extract library. Korean J Food Preserv, 12, 482-488
  12. Yoo JM, Hwang JS, Goo TW, Yun EY (2013) Comparative Analysis of Nutritional and Harmful Components in Korean and Chinese Mealworms (T. Molitor). J Korean Soc Food Sci Nutr, 42, 249-254 https://doi.org/10.3746/jkfn.2013.42.2.249
  13. Jung SJ, Lee YH, Jung JH, Lee BR, Han DM (1995) Antifungal Effect and activity spectrum of crude antifungal proteins from hemolymph of larvae of T. Molitor in Korea. J Korean Soc Food Sci Nutr, 23, 232-237
  14. Kim HJ, Kim SG, Kim JY, Choi HC (2013) Drying method by antimicrobial activity and antioxidant effect of T. Molitor. KJAE symposium, 284
  15. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200 https://doi.org/10.1038/1811199a0
  16. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26, 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  17. Stirpe F, Della Corte E (1969) The regulation of rat liver xanthine oxidase. conversion in vitro of the enzyme activity from dehydrogenase (type D) to oxidase (type O). J Biol Chem, 244, 3855-3863
  18. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of chemosensitivity testing. Cancer Res, 47, 936-942
  19. Bartholomew B. (1984) A rapid method for the assay of nitrate in urine using the nitrate reductase enzyme of Escherichia coli. Food Chem Toxicol, 22, 541-543 https://doi.org/10.1016/0278-6915(84)90224-2
  20. Samak G, Shenoy RP, Manjunatha S, Vinayak K (2009) Superoxide and hydroxyl radical scavenging actions of botanical extracts of wagatea spicata. Food Chem, 115, 631-634 https://doi.org/10.1016/j.foodchem.2008.12.078
  21. Gülçin İ, Berashvili D, Gepdiremen A (2005) Antiradical and antioxidant activity of total anthocyanins from perilla pankinensis decne. J Ethnopharmacol, 101, 287-293 https://doi.org/10.1016/j.jep.2005.05.006
  22. Gülçin İ (2006) Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology, 217, 213-220 https://doi.org/10.1016/j.tox.2005.09.011
  23. Joung YM, Park SJ, Lee KY, Lee JY, Suh JK, Hwang SY, Park KE, Kang MH (2007) Antioxidant and antimicrobial activities of Lilium species extracts prepared from different aerial parts. Korean J Food Sci Technol, 39, 452-457

Cited by

  1. 다양한 소재가 첨가된 누룽지의 이화학 특성 분석 vol.10, pp.2, 2020, https://doi.org/10.22156/cs4smb.2020.10.02.102
  2. Antioxidant Activities and Nutritional Components of Cricket (Gryllus bimaculatus) Powder and Protein Extract vol.18, pp.2, 2016, https://doi.org/10.20402/ajbc.2020.0016
  3. Anti-oxidant and Moisturizing Effects of Oil Extracted from Tenebrio molitor Larvae vol.18, pp.3, 2016, https://doi.org/10.20402/ajbc.2020.0036
  4. Quality and Characteristics of the Yanggaeng Made with Mealworm Powder vol.30, pp.1, 2016, https://doi.org/10.5934/kjhe.2021.30.1.169