References
- D. R. Clarke and S. R. Phillpot, "Thermal Barrier Coating Materials," Mater. Today, 8 [6] 22-9 (2005) https://doi.org/10.1016/S1369-7021(05)70934-2
- R. Vassen, M. O. Jarligo, T. Steinke, D. E. Mack, and D. Stover, "Overview on Advanced Thermal Barrier Coatings," Surf. Coat. Technol., 205 [4] 938-42 (2010). https://doi.org/10.1016/j.surfcoat.2010.08.151
- M. Gell, E. Jordan, K. Vaidyanathan, K. McCarron, B. Barber, Y. H. Sohn, and V. K. Tolpygo, "Bond Strength, Bond Stress and Spallation Mechanisms of Thermal Barrier Coatings," Surf. Coat. Technol., 120 [121] 53-60 (1999).
- H. Herman, S. Sampath, and R. McCune, "Thermal Spray: Current Status and Future Trends," MRS Bull., 25 [07] 17-25 (2000). https://doi.org/10.1557/mrs2000.119
- U. Schulz, C. Leyens, K. Fritscher, M. Peters, S. B. Bilge, O. Lavigne, J. M. Dorvaux, M. Poulain, R. Mevrel, and M. Caliez, "Some Recent Trends in Research and Technologyof Advanced Thermal Barrier Coatings," Aero. Sci. Technol., 7 [1] 73-80 (2003). https://doi.org/10.1016/S1270-9638(02)00003-2
- T. S. Sidhu, S. Prakash, and R. D. Agrawal, "Studies on the Properties of High-Velocity Oxy-Fuel Thermal Spray Coatings for Higher Temperature Applications," Surf. Coat. Technol., 41 [6] 805-23 (2009).
- X. Q. Cao, R. Vassen, and D. Stover, "Ceramic Materials for Thermal Barrier Coatings," J. Eur. Ceram. Soc., 24 [1] 1-10 (2004). https://doi.org/10.1016/S0955-2219(03)00129-8
- W. A. Nelson and R. M. Orenstein, "TBC Experience in Land-Based Gas Turbines," J. Therm. Spray Technol., 6 [2] 176-80 (1997). https://doi.org/10.1007/s11666-997-0009-5
- R. L. Jones, Metallurgical and Ceramic Protective Coatings: Thermal Barrier Coatings; pp. 194-235, Chapman and Hall, London, 1996.
- S. Paul, A. Cipitria, S. A. Tsipas, and T. W. Clyne, "Sintering Characteristics of Plasma Sprayed Zirconia Coatings Containing Different Stabilizers," Surf. Coat. Technol., 203 [8] 1069-74 (2009). https://doi.org/10.1016/j.surfcoat.2008.09.037
- A. G. Ebans, D. R. Mumm, J. W. Hutchinson, G. H. Meier, and F. S. Pettit, "Mechanisms Controlling the Durability of Thermal Barrier Coatings," Prog. Mater. Sci., 46 [5] 505-53 (2001). https://doi.org/10.1016/S0079-6425(00)00020-7
- D. R. Clarke, M. Oechsner, and N. P. Padture, "Thermal-Barrier Coatings for More Efficient Gas-Turbine Engines," MRS Bull., 37 [10] 891-98 (2012). https://doi.org/10.1557/mrs.2012.232
- D. R. Clarke and C. G. Levi, "Materials Design for the Next Generation Thermal Barrier Coatings," Annu. Rev. Mater. Res., 33 [1] 383-417 (2003). https://doi.org/10.1146/annurev.matsci.33.011403.113718
- R. A. Miller, "Current Status of Thermal Barrier Coatings an Overview," Surf. Coat. Technol., 30 [1] 1-11 (1987). https://doi.org/10.1016/0257-8972(87)90003-X
- C. G. Levi, "Emerging Materials and Processes for Thermal Barrier Systems," Curr. Opin. Solid State Mater. Sci., 8 [1] 77-91 (2004). https://doi.org/10.1016/j.cossms.2004.03.009
-
L. Guo, H. Guo, H. Peng, and S. Gong, "Thermophysical Properties of
$Yb_2O_3$ doped$Gd_2Zr_2O_7$ and Thermal Cycling Durability of$(Gd_{0.9}Yb_{0.1})_2Zr_2O_7/YSZ$ Thermal Barrier Coatings," J. Eur. Ceram. Soc., 34 [5] 1255-63 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.11.035 - E. Bakan, D. E. Mack, G. Mauer, and R. Vassen, "Gadolinium Zirconate/YSZ Thermal Barrier Coatings: Plasma Spraying, Microstructure, and Thermal Cycling Behavior," J. Am. Ceram. Soc., 97 [12] 4045-51 (2014). https://doi.org/10.1111/jace.13204
- R. Vassen, X. Cao, F. Tietz, D. Basu, and D. Stover, "Zirconates as New Materials for Thermal Barrier Coatings," J. Am. Ceram. Soc., 83 [8] 2023-28 (2000).
- T. A. Taylor, "Low Thermal Expansion BondCoats for Thermal Barrier Coatings," US Patent, 7,910,225, (March 22, 2011).
- G. Dwivedi, V. Viswanathan, S. Sampath, A. Shyam, and L. C. Edgar, "Fracture Toughness of Plasma-Sprayed Thermal Barrier Ceramics: Influence of Processing, Microstructure, and Thermal Aging," J. Am. Ceram. Soc., 9 [9] 2736-44 (2014).
- J. M. Drexler, C. H. Chen, A. D. Gledhill, K. Shinoda, S. Sampath, and N. P. Padture, "Plasma Sprayed Gadolinium Zirconate Thermal Barrier Coatings that are Resistant to Damage by Molten Ca-Mg-Al-Silicate Glass," Surf. Coat. Technol., 206 [19-20] 3911-16 (2012). https://doi.org/10.1016/j.surfcoat.2012.03.051
- R. Vassen, F. Traeger, and D. Stover, "New Thermal Barrier Coatings Based on Pyrochlore/YSZ/ Double-Layer Systems," Inter. J. App. Ceram. Technol., 1 [4] 351-61 (2004). https://doi.org/10.1111/j.1744-7402.2004.tb00186.x
-
L. Wang, Y. Wang, X. G. Sun, J.Q. He, Z. Y. Pan, and C. H. Wang, "Thermal Shock Behavior of 8YSZ and Double-Ceramic-Layer
$La_2Zr_2O_7/8YSZ$ Thermal Barrier Coatings Fabricated by Atmospheric Plasma Spraying," Ceram. Inter., 38 [5] 3595-606 (2012). https://doi.org/10.1016/j.ceramint.2011.12.076 - P. W. Scholke, "Advanced Gas Turbine Materials and Coatings", (GE Energy, Schenectady, NY, 1991).
- V. Viswanathan, G. Dwivedi, and S. Sampath, "Engineered Multilayer Thermal Barrier Coatings for Enhanced Durability and Functional Performance," J. Am. Ceram. Soc., 97 [9] 2770-78 (2014). https://doi.org/10.1111/jace.13033
- A. N. Khan and J. Lu, "Behavior of Air Plasma Sprayed Thermal Barrier Coatings, Subject to Intense Thermal Cycling," Surf. Coat. Technol., 166 [1] 37-43 (2003). https://doi.org/10.1016/S0257-8972(02)00740-5
-
K. Bobzin, N. Bagcivan, T. Brogelmann, and B. Yildirim, "Influence of Temperature on Phase Stability and Thermal Conductivity of Single and Double-Ceramic-Layer EB-PVD TBC Top Coats Consisting of 7YSZ,
$Gd_2Zr_2O_7$ and$La_2Zr_2O_7$ ," Surf. Coat. Technol., 237 56-64 (2013). https://doi.org/10.1016/j.surfcoat.2013.08.013
Cited by
- Variation of Thermal Barrier Coating Lifetime Characteristics with Thermal Durability Evaluation Methods pp.1544-1016, 2018, https://doi.org/10.1007/s11666-018-0784-1
- Growth Behavior of Thermally Grown Oxide Layer with Bond Coat Species in Thermal Barrier Coatings vol.55, pp.4, 2016, https://doi.org/10.4191/kcers.2018.55.4.05
- Experimental and Modeling Studies of Bond Coat Species Effect on Microstructure Evolution in EB-PVD Thermal Barrier Coatings in Cyclic Thermal Environments vol.9, pp.10, 2016, https://doi.org/10.3390/coatings9100626
- Behavior of yttria-stabilized zirconia (YSZ) during laser direct energy deposition of an Inconel 625-YSZ cermet vol.31, pp.None, 2016, https://doi.org/10.1016/j.addma.2019.100932
- 경사화 두께를 갖는 열차폐 코팅의 열적 내구성 평가 vol.21, pp.8, 2020, https://doi.org/10.5762/kais.2020.21.8.248
- Control of the Pore Structure of Plasma-Sprayed Thermal Barrier Coatings through the Addition of Unmelted Porous YSZ Particles vol.11, pp.3, 2016, https://doi.org/10.3390/coatings11030360
- Prediction of thermal fatigue life based on the microstructure of thermal barrier coating applied to single-crystal CMSX-4 considering stress ratio vol.47, pp.15, 2016, https://doi.org/10.1016/j.ceramint.2021.04.213