DOI QR코드

DOI QR Code

Effects of Debinding Atmosphere on Properties of Sintered Reaction-bonded Si3N4 Prepared by Tape Casting Method

  • Park, Ji-Sook (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Sung-Min (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Han, Yoon-Soo (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Hwang, Hae-Jin (Department of Materials Science and Engineering, Inha University) ;
  • Ryu, Sung-Soo (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
  • Received : 2016.09.07
  • Accepted : 2016.10.26
  • Published : 2016.11.30

Abstract

The effects of the debinding atmosphere on the properties of sintered reaction-bonded $Si_3N_4$ (SRBSN) ceramics prepared by tape casting method were investigated. Si green tape was produced from Si slurry of Si powder, using 11.5 wt% polyvinyl butyral as the organic binder and 35 wt% dioctyl phthalate as the plasticizer. The debinding process was conducted in air and $N_2$ atmospheres at $400^{\circ}C$ for 4 h. The nitridation process of the debinded Si specimens was performed at $1450^{\circ}C$, followed by sintering at $1850^{\circ}C$ and 20 MPa. The results revealed that the debinding atmosphere had a significant effect on $Si_3N_4$ densification and thermal conductivity. Owing to the higher sintered density and larger grain size, the thermal conductivity of $Si_3N_4$ specimens debinded in air was higher than that of the samples debinded in $N_2$. Thus, debinding in air could be suitable for the manufacture of high-performance SRBSN substrates by tape casting.

Keywords

References

  1. J. S. Lee, J. H. Mun, B. D. Han, D. S. Park, and H. D. Kim, "Effect of Raw-Si Particle Size on the Mechanical Properties of Sintered RBSN," J. Korean Ceram. Soc., 38 [8] 740-48 (2001).
  2. M. J. Choi, T. W. Roh, C. Park, D. S. Park, and H. D. Kim, "The Study of Reaction Bonded Silicon Nitride Fabricated Under Static Nitrogen Pressure," J. Korean Ceram. Soc., 37 [5] 505-10 (2000).
  3. K. H. Kwak, C. Kim, I. S. Han, and K. S. Lee, "Thermal Shock and Hot Corrosion Resistance of $Si_3N_4$ Fabricated by Nitrided Pressureless Sintering," J. Korean Ceram. Soc., 46 [5] 478-83 (2009). https://doi.org/10.4191/KCERS.2009.46.5.478
  4. S. K. Lee, J. D. Morreti, M. J. Readey, and B. R. Lawn, "Thermal Shock Resistance of Silicon Nitrides Using an Indentation-Quench Test," J. Am. Ceram. Soc., 85 [1] 279-81 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00083.x
  5. B. C. Bae, D. S. Park, W. C. Seo, K. S. Bang, and C. Park, "Microstructural Development of $Si_3N_4$ Ceramics Containing Aligned ${\beta}-Si_3N_4$ Whisker Seeds," J. Ocean Eng. Technol., 23 [5] 32-8 (2009).
  6. K. Hirao, Y. Zhou, H. Hyuga, T. Ohji, and D. Kusano, "High Thermal Conductivity Silicon Nitride Ceramics," J. Korean Ceram. Soc., 49 [4] 380-84 (2012). https://doi.org/10.4191/kcers.2012.49.4.380
  7. J. S. Lee, J. H. Mun, B. D. Han, D. S. Park, and H. D. Kim, "Densification Behavior of Reaction-Bonded Silicon Nitride Prepared by Using Coarse Si Powders," J. Korean Ceram. Soc., 39 [1] 45-50 (2002). https://doi.org/10.4191/KCERS.2002.39.1.045
  8. A. J. Moulson, "Review Reaction-bonded Silicon Nitride: Its Formation and Properties," J. Mater. Sci., 14 [5] 1017-51 (1979). https://doi.org/10.1007/BF00561287
  9. J. R. G. Evans and A. J. Moulson, "The Effect of Impurities on the Densification of Reaction-bonded Silicon Nitride (RBSN)," J. Mater. Sci., 18 [12] 3721-28 (1983). https://doi.org/10.1007/BF00540745
  10. G. Ziegler, J. Heinrich, and G. Wotting, "Review Relationships between Processing, Microstructure and Properties of Dense and Reaction-bonded Silicon Nitride," J. Mater. Sci., 22 [9] 3041-86 (1987). https://doi.org/10.1007/BF01161167
  11. R. G. Pigeon, A. Varma, and A. E. Miller, "Some Factors Influencing the Formation of Reaction-bonded Silicon Nitride," J. Mater. Sci., 28 [7] 1919-36 (1993). https://doi.org/10.1007/BF00595765
  12. Y. Zhou, X. Zhu, and K. Hirao, "Sintered Reaction-bonded Silicon Nitride with High Thermal Conductivity and High Strength," Int. J. Appl. Ceram. Technol., 5 [2] 119-26 (2008). https://doi.org/10.1111/j.1744-7402.2008.02187.x
  13. M. N. Rahaman and A. J. Moulson, "The Removal of Surface Silica and its Effect upon Silicon Nitridation Kinetics," J. Mater. Sci. 16 [8] 2319-21 (1981). https://doi.org/10.1007/BF00542400
  14. B. Lei, O. Babushkin, and R. Warren, "Nitridation Study of Reaction-bonded Silicon Nitride in situ by High Temperature X-Ray Diffraction," J. Eur. Ceram. Soc., 17 [9] 1113-18 (1997). https://doi.org/10.1016/S0955-2219(97)00016-2
  15. B. T. Lee, Y. J. Yoon, and K. H. Lee, "Microstructural Characterization of Electroconductive $Si_3N_4$-TiN Composites," Mater. Lett., 47 [1] 71-6 (2001). https://doi.org/10.1016/S0167-577X(00)00214-7
  16. J. A. Mangels, "Sintered Reaction Bonded Silicon Nitride," Ceram. Eng. Sci. Proc., 2 [7-8] 589-603 (1982).
  17. Y. J. Park, M. J. Park, J. M. Kim, J. W. Lee, J. W. Ko, and H. D. Kim, "Sintered Reaction-bonded Silicon Nitrides with High Thermal Conductivity : The Effect of the Starting Si Powder and $Si_3N_4$ Diluents," J. Eur. Ceram. Soc., 34 [5] 1105-13 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.11.040
  18. W. G. Yoon, J. J. Kim, and S. H. Cho, "Effects of Particle Size Distribution of Alumina on Behaviors of Tape Casting," J. Korean Ceram. Soc., 34 [11] 1173-81 (1997).
  19. J. S. Sung, K. D. Koo, and C. K .Yoon, "Effect of Binder Burnout Temperature on Sintering Shrinkage of Multilayer Ceramics," J. Korean Ceram. Soc., 33 [12] 1373-79 (1996).
  20. B. T. Lee, J. H. Yoo, and H. D. Kim, "Fabrication of Silicon Nitride Ceramics Using Semiconductor-Waste-Si Sludge," Korean J. Mater. Res., 9 [12] 1170-75 (1999).
  21. B. R. Golla, J. W. Ko, J. M. Kim, and H. D. Kim, "Effect of Particle Size and Oxygen Content of Si on Processing, Microstructure and Thermal Conductivity of Sintered Reaction Bonded $Si_3N_4$," J. Alloys Compd., 595 60-6 (2014). https://doi.org/10.1016/j.jallcom.2014.01.131
  22. W. Y. Park, D. S. Park, H. D. Kim, and B. D. Han, "Sintering and Mechanical Properties of Silicon Nitride Prepared with a Low-cost Silicon Nitride Powder," J. Korean Ceram. Soc., 38 [11] 987-92 (2001).
  23. J. S. Park, H. J. Lee, S. S. Ryu, S. M. Lee, H. J. Hwang, and Y. S. Han, "Optimization of Binder Burnout for Reaction Bonded $Si_3N_4$ Substrate Fabrication by Tape Casting Method," J. Korean Ceram. Soc., 52 [6] 435-40 (2015). https://doi.org/10.4191/kcers.2015.52.6.435
  24. S. C. Singhal, "Thermodynamics and Kinetics of Oxidation of Hot-pressed Silicon Nitride," J. Mater. Sci., 11 [3] 500-9 (1976). https://doi.org/10.1007/BF00540931
  25. K. Negita, "Effective Sintering Aids for $Si_3N_4$ Ceramics," J. Mater. Sci. Lett., 4 [6] 755-58 (1985). https://doi.org/10.1007/BF00726981
  26. M. Liehr, J. E. Lewis, and G. W. Rubloff, "Kinetics of High-temperature Thermal Decomposition of $SiO_2$ on Si(100)," J. Vac. Sci. Technol. A, 5 [4] 1559-62 (1987). https://doi.org/10.1116/1.574564
  27. F. W. Smith and G. Ghidini, "Reaction of Oxygen with Si(111) and (100): Critical Conditions for the Growth of $SiO_2$," J. Electrochem. Soc., 129 [6] 1300-6 (1982). https://doi.org/10.1149/1.2124122
  28. D. Starodub, E. P. Gusev, E. Garfunkel, and T. Gustafsson, "Silicon Oxide Decomposition and Desorption during the Thermal Oxidation of Silicon," Surf. Rev. Lett., 6 [1] 45-52 (1999). https://doi.org/10.1142/S0218625X99000081
  29. E. A. Gulbransen and S. A. Jansson, "The High-Temperature Oxidation, Reduction, and Volatilization Reactions of Silicon and Silicon Carbide," Oxid. Met., 4 [3] 181-201 (1972). https://doi.org/10.1007/BF00613092
  30. X. Zhu, Y. Zhou, K. Hirao, T. Ishigaki, and Y. Sakka, "Potential Use of only $Yb_2O_3$ in Producing Dense $Si_3N_4$ Ceramics with High Thermal Conductivity by Gas Pressure Sintering," Sci. Technol. Adv. Mater., 11 [6] 1-11 (2010).
  31. Y. Zhou, H. Hyuga, D. Kusano, Y. I. Yoshizawa, T. Ohji, and K. Hirao, "Review Article: Development of High-Thermal-Conductivity Silicon Nitride Ceramics," J. Asian. Ceram. Soc., 3 221-29 (2015). https://doi.org/10.1016/j.jascer.2015.03.003
  32. M. Kitayama, K. Hirao, M. Toriyama, and S. Kanzaki, "Thermal Conductivity of ${\beta}- Si_3N_4$: I, Effects of Various Microstructural Factors," J. Am. Ceram. Soc., 82 [11] 3105-12 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02209.x
  33. X. Zhu, Y. Zhou, and K. Hirao, "Processing and Thermal Conductivity of Sintered Reaction-Bonded Silicon Nitride. I: Effect of Si Powder Characteristics," J. Am. Ceram. Soc., 89 [11] 3331-39 (2006). https://doi.org/10.1111/j.1551-2916.2006.01195.x

Cited by

  1. -MWCNTs composite for thermal batteries vol.100, pp.10, 2017, https://doi.org/10.1111/jace.14991
  2. Efficacy of Ag–CuO Filler Tape for the Reactive Air Brazing of Ceramic–Metal Joints vol.55, pp.5, 2018, https://doi.org/10.4191/kcers.2018.55.5.05
  3. Microstructure and Thermal Conductivity of Sintered Reaction-Bonded Silicon Nitride: The Particle Size Effects of MgO Additive vol.2018, pp.1687-8442, 2018, https://doi.org/10.1155/2018/4263497
  4. Effect of Additives on Thermal Conductivity of Si3N4 Ceramics vol.1036, pp.None, 2016, https://doi.org/10.4028/www.scientific.net/msf.1036.185