DOI QR코드

DOI QR Code

Chemical Vapor Deposition of Tantalum Carbide from TaCl5-C3H6-Ar-H2 System

  • Kim, Daejong (Nuclear Materials Development Division, Korea Atomic Energy Research Institute) ;
  • Jeong, Sang Min (Nuclear Materials Development Division, Korea Atomic Energy Research Institute) ;
  • Yoon, Soon Gil (Department of Materials Engineering, Chungnam National University) ;
  • Woo, Chang Hyun (Research and Development Division, Tokai Carbon Korea) ;
  • Kim, Joung Il (Research and Development Division, Tokai Carbon Korea) ;
  • Lee, Hyun-Geun (Nuclear Materials Development Division, Korea Atomic Energy Research Institute) ;
  • Park, Ji Yeon (Nuclear Materials Development Division, Korea Atomic Energy Research Institute) ;
  • Kim, Weon-Ju (Nuclear Materials Development Division, Korea Atomic Energy Research Institute)
  • Received : 2016.07.25
  • Accepted : 2016.09.05
  • Published : 2016.11.30

Abstract

Tantalum carbide, which is one of the ultra-high temperature ceramics, was deposited on graphite by low pressure chemical vapor deposition from a $TaCl_5-C_3H_6-Ar-H_2$ mixture. To maintain a constant $TaCl_5/C_3H_6$ ratio during the deposition process, $TaCl_5$ powders were continuously fed into the sublimation chamber using a screw-driven feeder. Sublimation behavior of $TaCl_5$ powder was measured by thermogravimetric analysis. TaC coatings have various phases such as $Ta+{\alpha}-Ta_2C$, ${\alpha}-Ta_2C+TaC_{1-x}$, and $TaC_{1-x}$ depending on the powder feeding methods, the $C_3H_6/TaCl_5$ ratio, and the deposition temperatures. Near-stoichiometric TaC was obtained by optimizing the deposition parameters. Phase compositions were analyzed by XRD, XPS, and Raman analysis.

Keywords

References

  1. W. G. Fahrenholtz, E. J. Wuchina, W. E. Lee, and Y. Zhou, Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications; pp. 1-32, John Wiley & Sons, New Jersey, 2014.
  2. A. I. Gusev, A. S. Kurlov, and V. N. Lipatnikov, "Atomic and Vacancy Ordering in Carbide ${\zeta}-Ta_4C_{3-X}$(0.28 ${\leq}$ X ${\leq}$ 0.40) and Phase Equilibria in the Ta-C System," J. Sol. Stat. Chem., 180 [11] 3234-46 (2007). https://doi.org/10.1016/j.jssc.2007.09.015
  3. TOYO TANSO Co. Ltd. homepage, http://www.toyotanso.com. Accessed on 20/08/2016.
  4. R. A. Morris, B. Wang, L. E. Matson, and G. B. Thompson, "Microstructural Formations and Phase Transformation Pathways in Hot Isostatically Pressed Tantalum Carbides," Acta Mater., 60 139-48 (2012). https://doi.org/10.1016/j.actamat.2011.09.036
  5. M. Desmaison-Brut, N. Alexandre, and J. Desmaison, "Comparison of the Oxidation Behaviour of Two Dense Hot Isostatically Pressed Tantalum Carbide (TaC and $Ta_2C$) Materials," J. Eur. Ceram. Soc., 17 1325-34 (1997). https://doi.org/10.1016/S0955-2219(96)00235-X
  6. X. Zhang, G. E. Hilmas, and W. G. Fahrenholtz, "Hot Pressing of Tantalum Carbide with and without Sintering Additives," J. Am. Ceram. Soc., 90 [2] 393-401 (2007). https://doi.org/10.1111/j.1551-2916.2006.01416.x
  7. Z. J. Dong, X. K. Li, G. M. Yuan, Y. Cong, N. Li, Z. J. Hu, Z. Y. Jiang, and A. Westwood, "Fabrication of Protective Tantalum Carbide Coatings on Carbon Fibers Using a Molten Salt Method," Appl. Surf. Sci., 254 5936-40 (2008). https://doi.org/10.1016/j.apsusc.2008.03.158
  8. L. Limeng, Y. Feng, and Z. Yu, "Microstructure and Mechanical Properties of Spark Plasma Sintered $TaC_0.7$ Ceramics," J. Am. Ceram. Soc., 93 [10] 2945-47 (2010). https://doi.org/10.1111/j.1551-2916.2010.03908.x
  9. Y.-J. Wang, H.-J. Li, Q.-G. Fu, H. Wu, L. Liu, and C. Sun, "Ablation Behaviour of a TaC Coating on SiC Coated C/C Composites at Different Temperatures," Ceram. Int., 39 359-65 (2013). https://doi.org/10.1016/j.ceramint.2012.06.034
  10. R. Teghil, A. De Bonis, A. Galasso, P. Villani, and A. Satagata, "Femtosecond Pulsed Laser Ablation Deposition of Tantalum Carbide," Appl. Surf. Sci., 254 1220-23 (2007). https://doi.org/10.1016/j.apsusc.2007.07.178
  11. G. Hakansson, I. Petrov, and J.-E. Sundgren, "Growth of TaC Thin Film by Reactive Direct Current Magnetron Sputtering: Composition and Structure," J. Vac. Sci. Technol. A, 8 [5] 3769-78 (1990). https://doi.org/10.1116/1.576492
  12. Y.-H. Chang, J.-B. Wu, P.-J. Chang, and H.-T. Chiu, "Chemical Vapor Deposition of Tantalum Carbide and Carbonitride Thin Films from $Me_3Ce=Ta(CH_2CMe_3)_3$ (E = CH, N)," J. Mater. Chem., 13 365-69 (2003). https://doi.org/10.1039/b208129f
  13. A. K. Dua and V. C. George, "TaC Coatings Prepared by Hot Filament Chemical Vapour Deposition: Characterization and Properties," Thin Solid Films, 247 34-8 (1994). https://doi.org/10.1016/0040-6090(94)90472-3
  14. M. Ali, M. Urgen, and M. A. Atta, "Tantalum Carbide Films Synthesized by Hot-filament Chemical Vapor Deposition Technique," Surf. Coat. Technol., 206 2833-38 (2012). https://doi.org/10.1016/j.surfcoat.2011.12.002
  15. X. Xiong, Z.-K. Chen, B.-Y Huang, G.-D. Li, F. Zheng, P. Xiao, and H.-B. Zhang, "Surface Morphology and Preferentail Orientation Growth of TaC Crystals Formed by Chemical Vapor Deposition," Thin Solid Films, 517 3235-39 (2009). https://doi.org/10.1016/j.tsf.2008.11.058
  16. Z.-K. Chen, X. Xiong, B.-Y. Huang, G.-D. Li, F. Zheng, P. Xiao, H.-B. Zhang, and J. Yin, "Phase Composition and Morphology of TaC Coating on Carbon Fibers by Chemical Vapor Infiltration," Thin Solid Films, 516 8248-54 (2008). https://doi.org/10.1016/j.tsf.2008.03.016
  17. P. Smereka, X. Li, G. Russo, and D. J. Srolovitz, "Simulation of Faceted Film Growth in Three Dimensions: Microstructure, Morphology and Texture," Acta Mater., 53 1191-204 (2005). https://doi.org/10.1016/j.actamat.2004.11.013
  18. D. Kim, Y. B. Chun, M. J. Ko, H.-G. Lee, M.-S. Cho, J. Y. Park, and W.-J. Kim, "Microstructural Evolution of a ZrC Coating Layer in TRISO Particles during High-Temperature Annealing," J. Nucl. Mater., 479 93-9 (2016). https://doi.org/10.1016/j.jnucmat.2016.06.024
  19. Z.-K. Chen, X. Xiong, and Y. Long, "Influence of $TaCl_5$ Partial Pressure on Texture Structure of TaC Coating Deposited by Chemical Vapor Deposition," Appl. Surf. Sci., 257 4044-50 (2011). https://doi.org/10.1016/j.apsusc.2010.11.172
  20. X. Yao, K. Su, J. Deng, X. Wang, Q. Zeng, L. Cheng, Y. Xu, and L. Zhang, "Gas-Phase Thermodynamics in Preparation of Pyrolytic Carbon by Prophlene Pyrolysis," Comp. Mater. Sci., 40 504-24 (2007). https://doi.org/10.1016/j.commatsci.2007.02.002
  21. G. R. Gruzalski and D. M. Zehner, "Defect States in Substoichiometric Tantalum Carbide," Phys. Rev. B, 34 [6] 3841-8 (1986). https://doi.org/10.1103/PhysRevB.34.3841
  22. H. Wipe, M. V. Klein, and W. S. Williams, "Vacancy-Induced and Two-Phonon Raman Scattering in $ZrC_x$, $NbC_x$, $HfC_x$, and $TaC_x$," Phys. Stat. Sol. B, 108 489-500 (1981). https://doi.org/10.1002/pssb.2221080225

Cited by

  1. Thermodynamic Prediction of TaC CVD Process in TaCl5-C3H6-H2 System vol.28, pp.2, 2018, https://doi.org/10.3740/MRSK.2018.28.2.75
  2. Effect of carbon on the growth of TaC crystal derived from organometallic precursors vol.58, pp.1, 2016, https://doi.org/10.1007/s43207-020-00071-8
  3. Residual stress and ablation behavior of CVD TaC coatings on graphite vol.277, pp.None, 2022, https://doi.org/10.1016/j.matchemphys.2021.125627