DOI QR코드

DOI QR Code

Construction Stage Analysis of Cable-Stayed Bridges Using the Unstrained Element Length Method

무응력길이법을 이용한 사장교의 시공단계 해석

  • 박세웅 (DM엔지니어링) ;
  • 정명락 (성균관대학교 건설환경시스템공학과) ;
  • 민동주 (성균관대학교 건설환경시스템공학과) ;
  • 김문영 (성균관대학교 건설환경시스템공학과)
  • Received : 2015.07.27
  • Accepted : 2016.08.17
  • Published : 2016.12.01

Abstract

The propose of this study is to demonstrate how efficiently and accurately the construction stages of cable-stayed bridges are analyzed using the unstrained length method (ULM) in which all unstrained element lengths are determined from a simplified analytical method (Jung et al., 2015). A forward analysis of cable-stayed bridges using the commercial FEA program, MIDAS is sequentially carried out considering the lack of fit force but the ULM is able to analyze a intermediate construction stage directly by taking the corresponding unstrained lengths of the construction stage model simply. The closing load step analysis is achieved by loading the pavement and counter weight forces in reverse. An Incheon bridge model is analyzed using the present ULM and the commercial program, respectively, and the two analysis results are compared.

초기평형상태를 만족하는 간략해석법(Jung et al., 2015)의 무응력길이를 이용하여 사장교의 임의 시공단계를 직접적으로 모사할 수 있는 무응력길이 기반의 시공단계 해석법을 제시하고, 이 방법의 효용성과 정확성을 보이고자 한다. MIDAS해석 시 unknown load factor기능을 이용한 초기형상해석과 lack of fit force기능을 이용한 순방향해석을 실시하는데 반하여 ULM (unstrained length method)해석법은 무응력길이만 알고 있으면 중간단계를 거치지 않고 직접적으로 특정중간단계를 해석할 수 있다. 2차원 인천대교모델을 구축하고 ULM과 MIDAS를 각각 적용하여 시공단계해석을 수행하고, 수치예제를 통하여 두 해석결과를 분석한 결과, 완공계의 주탑, 주거더의 길이 차이로 인한 오차를 제외하면 비교적 서로 일치하는 결과를 보였다. 아울러, 포장무게와 카운터웨이트를 역으로 재하하여 폐합해석을 수행하고, 결과비교를 통하여 두 해석결과의 타당성을 보였다.

Keywords

References

  1. Jo, S. K. (1994). The construction error control system for composite cable-stayed bridges, Ph.D. Seoul National University.
  2. Jung, M. R., Min, D. J. and Kim, M. Y. (2013). "Nonlinear analysis methods based on the unstrained element length for determining initial shaping of suspension bridges under dead loads." Comput Struct, Vol. 128, pp. 272-285. https://doi.org/10.1016/j.compstruc.2013.06.014
  3. Jung, M. R., Park, S. W., Min, D. J. and Kim, M. Y. (2015). "A simplified analysis method for determining an optimized initial shape of cable-stayed bridges." Journal of the Korean Society of Civil Engineers, Vol. 36, No. 6, pp. 947-954 (in Korean). https://doi.org/10.12652/KSCE.2016.36.6.0947
  4. Kim, S. J., Shim, K. S., Won, D. H., Cho, S. K. and Kang, Y. J. (2011). "Stability analysis of steel cable-stayed bridges under construction stage." Journal of Korean Society of Steel Construction, Vol. 23, No. 1, pp. 99-111 (in Korean).
  5. Kim, W. J. (1990). A Study on static and dynamic spatial behavior of prestressed concrete bridges considering construction stages, Ph.D. Seoul National University (in Korean).
  6. Lee, J. S. (1991). Time-dependent nonlinear analysis of segmentally erected cable-supported pre stressed concrete frame structures, Ph.D. Seoul National University (in Korean).
  7. Lee, M. J. (1998). Construction stage analysis and error control of suspension bridges on the basis of initial equilibrium state, Ph.D. Seoul National University.
  8. Lee, M. K. and Lee, H. S. (2006). "Closing analysis of symmetric steel cable-stayed bridges and estimation of construction error." Journal of the Korean Society of Civil Engineers, Vol. 26, No. 1-A, pp. 55-65 (in Korean).
  9. Lozano-Galant, J. A., Paya-Zaforteza, I., Xuc, D. and Turmo, J. (2013). "Direct simulation of tensioning process of cable-stayed bridges." Comput Struct, Vol. 121, pp. 64-75. https://doi.org/10.1016/j.compstruc.2013.03.010
  10. Midas (2014). MIDAS IT, Midas-Civil Manual 2014.

Cited by

  1. A Simplified Analysis Method for Determining an Optimized Initial Shape of Cable-Stayed Bridges vol.36, pp.6, 2016, https://doi.org/10.12652/Ksce.2016.36.6.0947