Acknowledgement
Supported by : Ministry of Land, Infrastructure, and Transport (MOLIT)
References
- Andersland, O.B. and Ladanyi, B. (2004), Frozen Ground Engineering, (2nd Edition), John Wiley and Sons, Inc., 363 p.
- ASTM D4253-14 (2014), Standard Test Methods for Maximum Index Density and Unit Weight of Soils Using Vibratory Table, ASTM International, West Conshohocken, PA, USA.
- ASTM D4254-14 (2014), Standard Test Methods for Minimum Index Density and Unit Weight of Soils and Calculation of Relative Density, ASTM International, West Conshohocken, PA, USA.
- ASTM D5334-14 (2014), Standard Test Method for Determination of Thermal Conductivity by Thermal Needle Probe Procedure, ASTM International, West Conshohocken, PA, USA.
- Batchelor, G.K. and O'Brien, R.W. (1977), "Thermal or electrical conduction through a granular material", Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 355(1682), 313-333.
- Brandl, H. (2006), "Energy foundations and other thermos-active ground structures", Geotechnique, 56(2), 81-122. https://doi.org/10.1680/geot.2006.56.2.81
- Brigaud, F. and Vasseur, G. (1989), "Mineralogy, porosity and fluid control on thermal conductivity of sedimentary rocks", Geophys. J. Int., 98(3), 525-542. https://doi.org/10.1111/j.1365-246X.1989.tb02287.x
- Carslaw, H.S. and Jaeger, J.C. (1959), Conduction of Heat in Solids, (2nd Edition), Oxford University Press, London, 510 p.
- Cortes, D.D., Martin, A.I., Yun, T.S., Francisca, F.M., Santamarina, J.C. and Ruppel, C. (2009), "Thermal conductivity of hydrate-bearing sediments", J. Geophys. Res., 114, B11103. DOI: 10.1029/2008JB006235
- Cote, J. and Konrad, J. (2005), "A generalized thermal conductivity model for soils and costruction materials", Can. Geotech. J., 42, 443-458. https://doi.org/10.1139/t04-106
- Esch, D.C. (2004), Thermal Analysis, Construction and Monitoring Methods for Frozen Ground, American Society of Civil Engineers, 492, Reston, VA, USA.
- Gangadhara Rao, M.V.B.B. and Singh, D.N. (1999), "A generalized relationship to estimate thermal resistivity of soils", Can. Geotech. J., 36, 767-773. https://doi.org/10.1139/t99-037
- Go, G.H., Lee, S.R., Kim, Y.S., Park, H.K. and Yoon, S. (2014), "A new thermal conductivity estimation model for weathered granite soils in Korea", Geomech. Eng., Int. J., 6(4), 359-376. https://doi.org/10.12989/gae.2014.6.4.359
- Gori, F. and Corasaniti, S. (2004), "Theoretical prediction of the thermal conductivity and temperature variation inside Mars soil analogues", Planet. Space Sci., 52, 91-99. https://doi.org/10.1016/j.pss.2003.08.009
- Hashin, Z. and Shtrikman, S. (1963), "A variational approach to the theory of the elastic behavior of multiphase materials", J. Mech. Phys. Solids, 11(2), 127-140. https://doi.org/10.1016/0022-5096(63)90060-7
- Horai, K.I. and Simmons, G. (1969), "Thermal conductivity of rock forming minerals", Earth Planet. Sci. Lett., 6(5), 359-368. https://doi.org/10.1016/0012-821X(69)90186-1
- Johansen, O. (1977), Thermal Conductivity of Soils, Cold Regions Research and Engineering Lab Hanover NH, No. CRREL-TL-637.
- Johnston, I.W., Narsilio, G.A. and Colls, S. (2011), "Emerging geothermal energy technologies", KSCE J. Civ. Engrs., 15(4), 643-653. https://doi.org/10.1007/s12205-011-0005-7
- Kersten, M.S. (1949), "Laboratory research for the determination of the thermal properties of soils", ACFEL Tech. Rep. 23; University of Minnesota, Minneapolis, MI, USA.
- Kumai, W., Hashimoto, I., Ohsawa, S., Mitani, M. and Matsuda, Y. (1994), "Completion of high-efficiency water pipe cooling system for underground transmission line", IEEE Trans. Power Delivery, 9(1), 585-590.
- Kumlutas, D., Tavman, I.H. and Coban, M.T. (2003), "Thermal conductivity of particle filled polyethylene composite materials", Compos. Sci. Technol., 63, 113-117. https://doi.org/10.1016/S0266-3538(02)00194-X
- Lu, S., Ren, T., Gong, Y. and Horton, R. (2007), "An improved model for predicting soil thermal conductivity from water content at room temperature", Soil. Sci. Soc. Am. J., 71(1), 8-14. https://doi.org/10.2136/sssaj2006.0041
- Manohar, K., Yarbrough, D.W. and Booth, J.R. (2000), "Measurement of apparent thermal conductivity by the thermal probe method", J. Test. Eval., 28(5), 345-351. https://doi.org/10.1520/JTE12123J
- Murashov, V.V. and White, M.A. (2000), "Thermal conductivity of crystalline particulate materials", J. Mater. Sci., 35, 649-653. https://doi.org/10.1023/A:1004784613181
- Nasirian, A., Cortes, D.D. and Dai, S. (2015), "The physical nature of thermal conduction in dry granular media", Geotech. Lett., 5, 1-5. https://doi.org/10.1680/geolett.14.00073
- Roshankhah, S. and Santamarina, J.C. (2014), "Engineered granular materials for heat conduction and load transfer in energy geotechnology", Geotech. Lett., 4(2), 145-150. https://doi.org/10.1680/geolett.14.00001
- Singh, D.N. and Devid, K. (2000), "Generalized relationships for estimating soil thermal resistivity", Experim. Therm. Fluid Sci., 22, 133-143. https://doi.org/10.1016/S0894-1777(00)00020-0
- Sridhar, M.R. and Yovanovich, M.M. (1996), "Elastoplastic contact conductance model for isotropic conforming rough surfaces and comparison with experiments", J. Heat Transfer, 118(1), 3-9. https://doi.org/10.1115/1.2824065
- Tarnawski, V.R., Leong, W.H., Gori, F., Buchan, G.D. and Sundberg, J. (2002), "Inter- particle contact heat transfer in soil systems at moderate temperatures", Int. J. Energy Res., 26, 1345-1358. https://doi.org/10.1002/er.853
- Van der Held, E.F.M. and Van Drunnen, F.G. (1949), "A method of measuring thermal conductivity of liquids", Physica, 15(10), 865-881. https://doi.org/10.1016/0031-8914(49)90129-9
- Vargas, W.L. and McCarthy, J.J. (2001), "Heat conduction in granular materials", AIChE Journal, 47(5), 1052-1059. https://doi.org/10.1002/aic.690470511
- Von Herzen, R. and Maxwell, A.E. (1959), "The measurement of thermal conductivity of deep-sea sediments by a needle-probe method", J. Geophys. Res., 64(10), 1557-1563. https://doi.org/10.1029/JZ064i010p01557
- Woodside, W.M.J.H. and Messmer, J.H. (1961), "Thermal conductivity of porous media. I. Unconsolidated sands", J. Appl. Phys., 32(9), 1688-1699. https://doi.org/10.1063/1.1728419
- Yun, T.S. and Santamarina, J.C. (2008), "Fundamental study of thermal conduction in dry soils", Granul. Matter, 10(3), 197-207. https://doi.org/10.1007/s10035-007-0051-5
Cited by
- Effects of Fine Particles on Thermal Conductivity of Mixed Silica Sands vol.7, pp.7, 2017, https://doi.org/10.3390/app7070650
- Thermal Properties of Fly Ashes and Biomass Ashes Including Wood Bagasse Ashes and Sugarcane Bagasse Ashes vol.29, pp.3, 2016, https://doi.org/10.1061/(asce)mt.1943-5533.0001733
- Group Pile Effect on Temperature Distributions inside Energy Storage Pile Foundations vol.10, pp.18, 2016, https://doi.org/10.3390/app10186597
- Thermographic analysis of failure for different rock types under uniaxial loading vol.23, pp.6, 2020, https://doi.org/10.12989/gae.2020.23.6.503