Acknowledgement
Supported by : National Natural Science Foundation of China, Central Universities of China
References
- Ahmadi, H., Rahimi, H. and Rostami, M.E. (2012), "Control of swelling of soil under canal lining by wetting and drying cycles", Irrig. Drain., 61(4), 527-532. https://doi.org/10.1002/ird.1666
- Akcanca, F. and Aytekin, M. (2012), "Effect of wetting-drying cycles on swelling behavior of lime stabilized sand-bentonite mixtures", Environ. Earth Sci., 66(1), 67-74. https://doi.org/10.1007/s12665-011-1207-5
- Al-Mukhtar, M., Khattab, S. and Alcover, J.F. (2012), "Microstructure and geotechnical properties of lime-treated expansive clayey soil", Eng. Geol., 139-140, 17-27. https://doi.org/10.1016/j.enggeo.2012.04.004
- Aldaood, A., Bouasker, M. and Al-Mukhtar, M. (2014), "Impact of wetting-drying cycles on the microstructure and mechanical properties of lime-stabilized gypseous soils", Eng. Geol., 174, 11-21. https://doi.org/10.1016/j.enggeo.2014.03.002
- Brooks, S.M., Crozier, M.J. and Glade, T.W. (2004), "Towards establishing climatic thresholds for slope instability: use of a physically-based combined soil hydrology-slope stability model", Pure Appl. Geophys., 161(4), 881-905. https://doi.org/10.1007/s00024-003-2477-y
- Chandler, R.J. (1972), "Lias clay: Weathering processes and their effect on shear strength", Geotechnique, 22(3), 403-431. https://doi.org/10.1680/geot.1972.22.3.403
- Chen, R. and Ng, C.W.W. (2013), "Impact of wetting-drying cycles on hydro-mechanical behavior of an unsaturated compacted clay", Appl. Clay Sci., 86, 38-46. https://doi.org/10.1016/j.clay.2013.09.018
- Clarke, D. and Smethurst, J.A. (2010), "Effects of climate change on cycles of wetting and drying in engineered clay slopes in England", Quarter. J. Eng. Geol. Hydrogeol., 43(4), 473-486. https://doi.org/10.1144/1470-9236/08-106
- Dawson, E.M., Roth, W.H. and Drescher, A. (1999), "Slope stability by strength reduction", Geotechnique, 49(6), 835-840. https://doi.org/10.1680/geot.1999.49.6.835
- Donald, I.B. and Giam, S.K. (1988), "Application of the nodal displacement method to slope stability analysis", Proceedings of the 5th Australia-New Zealand Conference on Geomechanics, Sydney, Australia, August.
- Estabragh, A.R., Moghadas, M. and Javadi, A.A. (2013), "Effect of different types of wetting fluids on the behavior of expansive soil during wetting and drying", Soils Found., 53(5), 617-627. https://doi.org/10.1016/j.sandf.2013.08.001
- Goh, S.G., Rahardjo, H. and Leong, E.C. (2014), "Shear strength of unsaturated soils under multiple drying-wetting cycles", J. Geotech. Geoenviron. Eng.-ASCE, 140(2), 06013001-06013005. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001032
- Goual, I., Goual, M.S. and Taibi, S. (2011), "Behaviour of unsaturated tuff-calcareous sand mixture on drying-wetting and triaxial paths", Geomech. Eng., Int. J., 3(4), 267-284. https://doi.org/10.12989/gae.2011.3.4.267
- Griffiths, D.V. and Lane, P.A. (1999), "Slope stability analysis by finite elements", Geotechnique, 49(3), 387-403. https://doi.org/10.1680/geot.1999.49.3.387
- Gulla, G., Mandaglio, M.C. and Moraci, N. (2006), "Effect of weathering on the compressibility and shear strength of a natural clay", Can. Geotech. J., 43(6), 618-625. https://doi.org/10.1139/t06-028
- Guney, Y., Sari, D., Cetin, M. and Tuncan, M. (2007), "Impact of cyclic wetting-drying on swelling behavior of lime-stabilized soil", Build. Environ., 42(2), 681-688. https://doi.org/10.1016/j.buildenv.2005.10.035
- Hughes, P.N., Glendinning, S. and Mendes, J. (2009), "Full-scale testing to assess climate effects on embankments", Proceedings of the Institution of Civil Engineers-Engineering Sustainability, 162(2), 67-79.
- Itasca Consulting Group, Inc. (2002), FLAC-Fast Lagrangian Analysis of Continua, Version 4.0 Users' Guide, Itasca, Consulting Group, Inc., Minneapolis, MN, USA.
- Kalkan, E. (2009), "Influence of silica fume on the desiccation cracks of compacted clayey soils", Appl. Clay Sci., 43(3-4), 296-302. https://doi.org/10.1016/j.clay.2008.09.002
- Kalkan, E. (2011), "Impact of wetting-drying cycles on swelling behavior of clayey soils modified by silica fume", Appl. Clay Sci., 54(4), 345-352.
- Kalkan, E. and Akbulut, S. (2004), "The positive effects of silica fume on the permeability, swelling pressure and compressive strength of natural clay liners", Eng. Geol., 73(1-2), 145-156. https://doi.org/10.1016/j.enggeo.2004.01.001
- Kampala, A., Horpibulsuk, S., Prongmanee, N. and Chinkulkijniwat, A. (2014), "Influence of wet-dry cycles on compressive strength of calcium carbide residue-fly ash stabilized clay", J. Mater. Civil Eng., 26(4), 633-643. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000853
- Kholodov, V.A. (2013), "The capacity of soil particles for spontaneous formation of macro aggregates after a wetting-drying cycle", Eurasian Soil Sci., 46(6), 660-667. https://doi.org/10.1134/S1064229313040078
- Kilsby, C., Glendinning, S. and Hughes, P.N. (2009), "Climate-change impacts on long-term performance of slopes", Proceedings of the Institution of Civil Engineers-Engineering Sustainability, 162(2), 59-66.
- Leroueil, S. (2001), "Natural slopes and cuts: movement and failure mechanisms", Geotechnique, 51(3), 197-243. https://doi.org/10.1680/geot.2001.51.3.197
- Malusis, M.A., Yeom, S. and Evans, J.C. (2011), "Hydraulic conductivity of model soil-bentonite backfills subjected to wet-dry cycling", Can. Geotech. J., 48(8), 1198-1211. https://doi.org/10.1139/t11-028
- Manzari, M.T. and Nour, M.A., (2000), "Significance of soil dilatancy in slope stability analysis", J. Geotech. Geoenviron. Eng., 123(1), 75-80.
- Matsui, T. and San, K.C. (1992), "Finite element slope stability analysis by shear strength reduction technique", Soils Found., 32(1), 59-70. https://doi.org/10.3208/sandf1972.32.59
- Mshana, N.S., Suzuki, A. and Kitazono, Y. (1993), "Effects of weathering on stability of natural slopes in north-central Kumamoto", Soils Found., 33(4), 74-87. https://doi.org/10.3208/sandf1972.33.4_74
- Nowamooz, H., Jahangir, E. and Masrouri, F. (2013), "Volume change behaviour of a swelling soil compacted at different initial states", Eng. Geol., 153, 25-34. https://doi.org/10.1016/j.enggeo.2012.11.010
- Rajiaram, G. and Erbach, D.C. (1999), "Effect of wetting and drying on soil physical properties", J. Terramech., 36(1), 39-49. https://doi.org/10.1016/S0022-4898(98)00030-5
- Ridley, A., McGinnity, B. and Vaughan, P. (2004), "Role of pore water pressures in embankment stability", Geotech. Eng., 157(4), 193-198. https://doi.org/10.1680/geng.2004.157.4.193
- Rouainia, M., Davies, O. and Brien, T.O. (2009), "Numerical modelling of climate effects on slope stability", Proceedings of the Institution of Civil Engineers-Engineering Sustainability, 162(2), 81-89.
- Smethurst, J.A., Clarke, D. and Powrie, W. (2006), "Seasonal changes in pore water pressure in a grass-covered cut slope in London Clay", Geotechnique, 56(8), 523-537. https://doi.org/10.1680/geot.2006.56.8.523
- Suksun, H., Runglawan, R. and Avirut, C. (2010), "Analysis of strength development in cement-stabilized silty clay from microstructural considerations", Construct. Build. Mater., 24(10), 2011-2021. https://doi.org/10.1016/j.conbuildmat.2010.03.011
- Toll, D.G., Mendes, J. and Augarde, C.E. (2008), "Effects of climate change on slopes for transportation infrastructure", Proceedings of the 1st International Conference on Transportation Geotechnics, Nottingham, England, August.
- Uchaipichat, A. (2010), "Experimental investigation on loading collapse curve of unsaturated soils under wetting and drying processes", Geomech. Eng., Int. J., 2(3), 203-211. https://doi.org/10.12989/gae.2010.2.3.203
- Ugai, K. and Leshchinsky, D. (1995), "Three-dimensional limit equilibrium and finite element analysis: a comparison of results", Soils Found., 35(4), 1-7.
- Wang, J.B., Liu, X.R. and Liu, X.J. (2014), "Creep properties and damage model for salt rock under low-frequency cyclic loading", Geomech. Eng., Int. J., 7(5), 569-587. https://doi.org/10.12989/gae.2014.7.5.569
- Zhang, P.W. and Chen, Z.Y. (2006), "Influences of soil elastic modulus and Poisson's ratio on slope stability", Rock Soil Mech., 27(2), 299-303. [In Chinese]
- Zheng, H., Tham, L.G. and Liu, D. (2006), "On two definitions of the factor of safety commonly used in the finite element slope stability analysis", Comput. Geotech., 33(3), 188-195. https://doi.org/10.1016/j.compgeo.2006.03.007
- Zienkiewicz, O.C., Humpheson, C. and Lewis, R.W. (1975), "Associated and non-associated visco-plasticity and plasticity in soil mechanics", Geotechnique, 25(4), 671-689. https://doi.org/10.1680/geot.1975.25.4.671
Cited by
- Prediction models of the shear modulus of normal or frozen soil-rock mixtures vol.15, pp.2, 2016, https://doi.org/10.12989/gae.2018.15.2.783
- Numerical modeling on the stability of slope with foundation during rainfall vol.17, pp.1, 2016, https://doi.org/10.12989/gae.2019.17.1.109
- A new criterion for defining the failure of a fractured rock mass slope based on the strength reduction method vol.11, pp.1, 2016, https://doi.org/10.1080/19475705.2020.1814428
- A set of failure variables for analyzing stability of slopes and tunnels vol.20, pp.3, 2016, https://doi.org/10.12989/gae.2020.20.3.175
- Strain-based stability analysis of locally loaded slopes under variable conditions vol.23, pp.3, 2016, https://doi.org/10.12989/gae.2020.23.3.289
- Slope hybrid reliability analysis considering the uncertainty of probability-interval using three-parameter Weibull distribution vol.105, pp.1, 2016, https://doi.org/10.1007/s11069-020-04323-y
- Explicit finite element analysis of slope stability by strength reduction vol.26, pp.2, 2016, https://doi.org/10.12989/gae.2021.26.2.133