Acknowledgement
Supported by : Australian Research Council
References
- Fabio, C., Jose, R. and Umut, Y. (2012), "Active and semi-active control of structures - theory and applications: A review of recent advances", J. Intel. Mat. Syst. Struct., 23(11), 1181-1195. https://doi.org/10.1177/1045389X12445029
- Faycal, I. (2007), Systems with hysteresis analysis, identification and control using the Bouc-Wen model, John Wiley & Sons Ltd, Chichester, England.
- Fisco, N.R. and Adeli, H. (2011), "Smart structures: Part I-Active and semi-active control", Sci. Iran., 18(3), 275-284. https://doi.org/10.1016/j.scient.2011.05.034
- Gu, X., Li, J., Li, Y. and Askari, M. (2015), "Frequency control of smart base isolation system employing a novel adaptive magneto-rheological elastomer base isolator", J. Intel. Mat. Syst. Struct., 27(7), 849-858.
- Hosseini, M. and Farsangi, E.N. (2012), "Telescopic columns as a new base isolation system for vibration control of high-rise buildings", Earthq. Struct., 3(6), 853-867. https://doi.org/10.12989/eas.2012.3.6.853
- Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos A.G., Claus R.O., Masri S.F., Skelton R.E., Soong T.T., Spencer B.F. and Yao J.T.P. (1997), "Structural control: past, present, and future", J. Eng. Mech., ASCE, 123(9), 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)
- Ismail, M., Ikhouane, F. and Rodellar, J. (2009), "The Hysteresis Bouc-Wen Model, a Survey", Arch. Comput. Method E., 16(2), 161-188. https://doi.org/10.1007/s11831-009-9031-8
- Kelly, J.M., Leitmann, G. and Soldatos, A.G. (1987), "Robust control of base-isolated structures under earthquake excitation", J. Optimiz, Theory App., 53(2), 159-180. https://doi.org/10.1007/BF00939213
- Li, H. and Ou, J. (2006), "A design approach for semi-active and smart base-isolated buildings", Struct. Control Hlth., 13, 660-681 https://doi.org/10.1002/stc.104
- Li, Y. and Li, J. (2015a), "Finite element design and analysis of adaptive base isolator utilizing laminated multiple magnetorheological elastomer layers", J. Intel. Mat. Syst. Str., 26(14), 1861-1870. https://doi.org/10.1177/1045389X15580654
- Li, Y. and Li, J. (2015b), "A highly adjustable base isolator utilizing magnetorheological elastomer: experimental testing and modeling", J. Vib. Acoust., 137(1), 11009 https://doi.org/10.1115/1.4028228
- Li, Y., Li, J., Li, W. and Samali, B. (2013a), "Development and characterization of a magnetorheological elastomer based adaptive seismic isolator", Smart Mater. Struct., 22, 035005. https://doi.org/10.1088/0964-1726/22/3/035005
- Li, Y., Li, J., Tian, T. and Li, W. (2013b), "A highly adjustable magnetorheological elastomer base isolator for applications on real-time adaptive control", Smart Mater. Struct., 22, 095020. https://doi.org/10.1088/0964-1726/22/9/095020
- Liu, J, Xia, K and Zhu, C. (2009), "The state-of-the-art review of structural control strategy", International Conference on E-Learning, E-Business, Enterprise Information Systems, and E-Government, HongKong, HongKong, December.
- Murase, M., Tsuji, M. and Takewaki, I. (2013), "Smart passive control of buildings with higher redundancy and robustness using base-isolation and inter-connection", Earthq. Struct., 4(6), 649-670. https://doi.org/10.12989/eas.2013.4.6.649
- Patil, S.J., Reddy, G.R., Shivshankar, R., Rabu, R., Jayalekshmi, B.R. and Kumar, B. (2016), "Seismic base isolation for structures using river sand", Earthq. Struct., 10(4),829-847. https://doi.org/10.12989/eas.2016.10.4.829
- Ramallo, J.C., Johnson, E.A. and Spencer Jr, B.F. (2002), "'Smart' base isolation systems", J. Eng. Mech., ASCE, 128(10), 1088-1099. https://doi.org/10.1061/(ASCE)0733-9399(2002)128:10(1088)
- Soong, T.T. (1990), Active structural control: theory and practice, John Wiley & Sons Ltd, New York, USA.
- Spencer Jr, B.F. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng., ASCE, 129(7), 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845)
- Sues, R., Mau, S., and Wen, Y. (1988), "Systems identification of degrading hysteretic restoring forces", J. Eng. Mech., ASCE, 114(5), 833-846. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:5(833)
- Tarek, E.S., George, N., Jan-Erik, J. and Hans, H. (2015), "A state-of-the-art review of structural control systems", J. Vib. Control, 21(5), 919-937. https://doi.org/10.1177/1077546313478294
- Yang, J., Du, H., Li, W., Li, Y. and Li, J. (2013), "Experimental study and modeling of a novel magnetorheological elastomer isolator", Smart Mater. Struct., 22(11), 117001. https://doi.org/10.1088/0964-1726/22/11/117001
- Yu, Y., Li, Y. and Li, J. (2014), "A New Hysteretic Model for Magnetorheological Elastomer Base Isolator and Parameter Identification Based on Modified Artificial Fish Swarm Algorithm", The 31st International Symposium on Automation and Robotics in Construction and Mining, Sydney, July.
- Yu Y., Li Y. and Li J. (2015b), "Parameter identification and sensitivity analysis of an improved LuGre friction model for magnetorheological elastomer base isolator", Meccanica, 50(11), 2691-2707. https://doi.org/10.1007/s11012-015-0179-z
- Yu, Y., Li, Y. and Li, J. (2015a), "Parameter identification of a novel strain stiffening model for magnetorheological elastomer base isolator utilizing enhanced particle swarm optimization", J. Intel. Mat. Syst. Struct., 26(18), 2446-2462. https://doi.org/10.1177/1045389X14556166
Cited by
- A dual-loop adaptive control for minimizing time response delay in real-time structural vibration control with magnetorheological (MR) devices vol.27, pp.1, 2018, https://doi.org/10.1088/1361-665X/aa98be
- Modeling the behaviors of magnetorheological elastomer isolator in shear-compression mixed mode utilizing artificial neural network optimized by fuzzy algorithm (ANNOFA) vol.27, pp.11, 2018, https://doi.org/10.1088/1361-665X/aadfa9
- The effect of composite-elastomer isolation system on the seismic response of liquid-storage tanks: Part I vol.15, pp.5, 2018, https://doi.org/10.12989/eas.2018.15.5.513
- Hysteresis characterization and identification of the normalized Bouc-Wen model vol.70, pp.2, 2016, https://doi.org/10.12989/sem.2019.70.2.209
- Semi-Active Control for Benchmark Building Using Innovative TMD with MRE Isolators vol.20, pp.6, 2020, https://doi.org/10.1142/s021945542040009x
- Comparison of classical and reliable controller performances for seismic response mitigation vol.20, pp.3, 2016, https://doi.org/10.12989/eas.2021.20.3.353